IEEE Trans Syst Man Cybern B Cybern
February 2011
This paper studies the problem of stabilization for sampled-data neural-network-based control systems with an optimal guaranteed cost. Unlike previous works, the resulting closed-loop system with variable uncertain sampling cannot simply be regarded as an ordinary continuous-time system with a fast-varying delay in the state. By defining a novel piecewise Lyapunov functional and using a convex combination technique, the characteristic of sampled-data systems is captured.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2008
This paper studies the problem of stability analysis for neural networks (NNs) with a time-varying delay. Unlike the previous works, the activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. By defining a more general type of Lyapunov functionals, some new less conservative delay-dependent stability criteria are established in terms of linear matrix inequalities (LMIs).
View Article and Find Full Text PDF