IEEE Trans Image Process
February 2025
Conventional spectral image demosaicing algorithms rely on pixels' spatial or spectral correlations for reconstruction. Due to the missing data in the multispectral filter array (MSFA), the estimation of spatial or spectral correlations is inaccurate, leading to poor reconstruction results, and these algorithms are time-consuming. Deep learning-based spectral image demosaicing methods directly learn the nonlinear mapping relationship between 2D spectral mosaic images and 3D multispectral images.
View Article and Find Full Text PDFThe manipulation of thermal radiation amplitude or direction over a broadband spectrum is a fundamental capability, demonstrating significant potential in thermal management and infrared information encryption. However, existing approaches cannot control both aspects simultaneously. In this study, an ultrabroadband directional tunable thermal emitter (UDTTE) utilizing the metal-insulator transition properties of vanadium dioxide photonic structure and the Brewster effect is proposed.
View Article and Find Full Text PDFBMC Musculoskelet Disord
February 2025
Objective: A retrospective study was conducted to analyze the specific causes and literature review of patients who developed poor incision healing problems after hip and knee surgery.
Methods: This was a retrospective analysis of 250 patients admitted to the Department of Orthopedics and Traumatology of the Affiliated Hospital of Nanjing University of Traditional Chinese Medicine from October 1, 2022 to August 14, 2023 for hip and knee surgery. Among them, patients, 27 males and 39 females, were found to have poor incision healing after surgery; their ages ranged from 22 - 79 years, with an average of 58.
Eur J Med Chem
March 2025
Actinomycetes are an important source of secondary metabolites such as antibiotics and other active natural products. Many well-known antibiotics, such as streptomycin, oxytetracycline, and tetracycline, are produced by actinomycetes. Different types of antibiotics have distinct mechanisms of action against microorganisms: inhibit protein synthesis, inhibit nucleic acid synthesis, or inhibit cell wall synthesis.
View Article and Find Full Text PDFAims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
December 2024
Objective: A prospective randomized controlled study was conducted to investigate the early postoperative analgesic effectiveness of using liposomal bupivacaine (LB) for local infiltration anesthesia (LIA) in unicompartmental knee arthroplasty (UKA).
Methods: Between January 2024 and July 2024, a total of 80 patients with knee osteoarthritis (KOA) who met the selection criteria were enrolled in the study. Patients were randomly assigned to either the LB group or the "cocktail" group in a 1∶1 ratio using a random number table, with 40 patients in each group.
The IV subfamily of receptor-like cytoplasmic kinase (RLCK-IV), known as calcium-binding receptor-like cytoplasmic kinases (CRCKs), plays a vital role in plant signal transduction, particularly in coordinating growth and responses to abiotic stresses. However, our comprehension of CRCK genes in , a species characterized as fast-growing and pest-resistant but with drought intolerance, is limited. Here, we identify 6 members of the CRCK subfamily on a genome-wide scale in , denoted as -.
View Article and Find Full Text PDFTemperature is a key manifestation of energy, with about 51% of global energy consumption occurring in the form of heat annually [...
View Article and Find Full Text PDFThe aging process of microplastics (MPs) affects their surface physicochemical properties, thereby influencing their behaviors in releasing harmful chemicals, adsorption of organic contaminants, sinking, and more. Understanding the aging process is crucial for evaluating MPs' environmental behaviors and risks, but tracing the aging process remains challenging. Here, we propose a multimodal deep learning model to trace typical aging factors of aged MPs based on MPs' physicochemical characteristics.
View Article and Find Full Text PDFHepatic metachronous oligometastatic nasopharyngeal carcinoma (hmoNPC) exhibits distinct clinical characteristics compared to other types of metastatic NPC. We investigated the optimal therapy for hmoNPC. 160 patients with hmoNPC treated in Sun Yat-sen University Cancer Center between 2010 and 2021 were retrospectively recruited.
View Article and Find Full Text PDFObject detection, a fundamental and challenging problem in computer vision, has experienced rapid development due to the effectiveness of deep learning. The current objects to be detected are mostly rigid solid substances with apparent and distinct visual characteristics. In this paper, we endeavor on a scarcely explored task named Gaseous Object Detection (GOD), which is undertaken to explore whether the object detection techniques can be extended from solid substances to gaseous substances.
View Article and Find Full Text PDFConstructing crossmodal in-sensor processing system based on high-performance flexible devices is of great significance for the development of wearable human-machine interfaces. A bio-inspired crossmodal in-sensor computing system can perform real-time energy-efficient processing of multimodal signals, alleviating data conversion and transmission between different modules in conventional chips. Here, we report a bio-inspired crossmodal spiking sensory neuron (CSSN) based on a flexible VO memristor, and demonstrate a crossmodal in-sensor encoding and computing system for wearable human-machine interfaces.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
August 2024
J Environ Sci (China)
December 2024
To improve the selective separation performance of silica nanofibers (SiO NFs) for cesium ions (Cs) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO-NH NFs were prepared to remove Cs from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO NFs. Meanwhile, the amino functional groups in APTES combined with Fe and then reacted with Fe to form PB NPs, which anchored firmly on the aminoated SiO NFs surface.
View Article and Find Full Text PDFMyocardial motion tracking stands as an essential clinical tool in the prevention and detection of cardiovascular diseases (CVDs), the foremost cause of death globally. However, current techniques suffer from incomplete and inaccurate motion estimation of the myocardium in both spatial and temporal dimensions, hindering the early identification of myocardial dysfunction. To address these challenges, this paper introduces the Neural Cardiac Motion Field (NeuralCMF).
View Article and Find Full Text PDFBackground: Endometrial cancer is a kind of gynaecological cancer. S100A2 is a newfound biomarker to diagnose endometrial cancer. This study was to investigate the role of S100A2 on regulating migration and invasion of endometrial cancer.
View Article and Find Full Text PDFUnderstanding water splitting in pH-neutral media has important implications for hydrogen production from seawater. Despite their significance, electrochemical water oxidation and reduction in neutral electrolytes still face great challenges. This study focuses on designing efficient electrocatalysts capable of promoting the oxygen evolution reaction (OER) in neutral media by incorporating high-valence elements into transition-metal hydroxides.
View Article and Find Full Text PDFA disordered crystal structure is an asymmetrical atomic lattice resulting from the missing atoms (vacancies) or the lattice misarrangement in a solid-state material. It has been widely proven to improve the electrocatalytic hydrogen evolution reaction (HER) process. In the present work, due to the special physical properties (the low evaporation temperature of below 900 °C), Zn is utilized as a sacrificial component to create senary PtIrNiCoFeZn high-entropy alloy (HEA) with highly disordered lattices.
View Article and Find Full Text PDFThe metal indium sulfides have attracted extensive research interest in photocatalysis due to regulable atomic configuration and excellent optoelectronic properties. However, the synthesis of metal indium sulfide atomic layers is still challenging since intrinsic non-van-der-Waals layered structures of some components. Here, a surfactant self-assembly growth mechanism is proposed to controllably synthesize metal indium sulfide atomic layers.
View Article and Find Full Text PDFPurpose: To determine the prevalence of anxiety and depression in patients with nasopharyngeal carcinoma (NPC) and to identify central symptoms and bridge symptoms among psychiatric disorders.
Methods: This cross-sectional study recruited patients with NPC in Guangzhou, China from May 2022, to October 2022. The General Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire-9 (PHQ-9) were used for screening anxiety and depression, respectively.
Ferrotoroidicity-the fourth form of primary ferroic order-breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2024
We endeavor on a rarely explored task named thermal infrared video denoising. Perception in the thermal infrared significantly enhances the capabilities of machine vision. Nonetheless, noise in imaging systems is one of the factors that hampers the large-scale application of equipment.
View Article and Find Full Text PDF