Publications by authors named "Xun Bo Zhou"

Heavy metals like nickel (Ni) from anthropogenic activities damage plant growth, posing challenges to agriculture. Melatonin (ME), a potent bio-regulator, has shown promise in alleviating stress induced by heavy metals. However, the mechanisms through which ME alleviates NiO-NPs phytotoxicity remain unclear.

View Article and Find Full Text PDF

Nickel oxide nanoparticles (NiO-NPs) pose potential threats to agricultural production. Bacillus subtilis has emerged as a stress-mitigating microbe that alleviates the phytotoxicity caused by NiO-NPs. However, the mechanisms underlying its effectiveness, particularly in root-nodule symbiosis and biological N2-fixation (BNF), remain unclear.

View Article and Find Full Text PDF

Introduction: To increase the crop yield, the amount of agrochemicals used in field has increased in recent years. Moreover, indiscriminate use of chemical fertilizers has led to soil deterioration and compaction. Inclusion of straw and tillage practices to the field could play an important role in improving the soil quality and crop yield.

View Article and Find Full Text PDF

Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere.

View Article and Find Full Text PDF

The uneven spatial and temporal distribution of light resources and water scarcity during the grain-filling stage pose significant challenges for sustainable crop production, particularly in the arid areas of the Loess Plateau in Northwest China. This study aims to investigate the combined effects of drought and shading stress on winter wheat growth and its physio-biochemical and antioxidative responses. Wheat plants were subjected to different drought levels- full irrigation (I100), 75% of full irrigation (I75), 50% of full irrigation (I50), and 25% of full irrigation (I25), and shading treatments - 12, 9, 6, 3 and 0 days (SD12, SD9, SD6, SD3, and CK, respectively) during the grain-filling stage.

View Article and Find Full Text PDF
Article Synopsis
  • The rising number of drought events threatens future crop production, particularly in tomatoes, and understanding how plants respond to drought stress is crucial.
  • Melatonin, a small compound known for its regulatory roles in plants, was tested to see if it could help mitigate drought stress by improving sugar metabolism and reducing abscisic acid levels.
  • Results showed that melatonin treatment increased biomass, leaf pigments, and sucrose content in drought-stressed tomato seedlings, while also lowering the accumulation of abscisic acid and enhancing the activity of enzymes related to sugar metabolism.
View Article and Find Full Text PDF

Background: Straw incorporation serves as an effective strategy to enhance soil fertility and soil microbial biomass carbon (SMBC), which in turn improves maize yield and agricultural sustainability. However, our understanding of nitrogen (N) fertilization and straw incorporation into soil microenvironment is still evolving. This study explored the impact of six N fertilization rates (N0, N100, N150, N200, N250, and N300) with and without straw incorporation on soil fertility, SMBC, enzyme activities, and maize yield.

View Article and Find Full Text PDF
Article Synopsis
  • Flooding and drought are major obstacles for maize production, with glycinebetaine (GB) being an osmotic agent that may help mitigate these stresses, though research on its effectiveness is limited.
  • This study examines the impact of various GB concentrations on maize hybrids Yindieyu 9 and Heyu 397, subjected to flooding and drought conditions at the three-leaf stage.
  • Results showed that 5.0 mM GB significantly improved antioxidant activities and overall growth in maize, with a greater effect observed under flooding conditions, particularly in the Heyu 397 variety.
View Article and Find Full Text PDF

Salt stress presents a major obstacle to maize (Zea mays L.) production globally, impeding its growth and development. In this study, we aimed to identify salt-tolerant maize varieties through evaluation using multivariate analysis and shed light on the role of ionome, antioxidant capacity, and autophagy in salt tolerance.

View Article and Find Full Text PDF

Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.

View Article and Find Full Text PDF

Drought is one of the most significant abiotic stress threatening to crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. As the global climate changes, it is more important to find solutions to make plants more resilient to drought.

View Article and Find Full Text PDF

Drought and flooding are the two most important environmental factors limiting maize (Zea mays L.) production globally. This study aimed to investigate the physiological mechanisms and accurate evaluation indicators and methods of maize germplasm involved in drought and flooding stresses.

View Article and Find Full Text PDF

Introduction: Surplus use of chemical nitrogen (N) fertilizers to increase agricultural Q9 production causes severe problems to the agricultural ecosystem and environment. This is contrary to N use efficiency and sustainable agricultural production.

Methods: Hence, this study was designed to investigate the effect of maizesoybean intercropping on N uptake, N yield, N utilization use efficiency, and the associated nitrogen assimilatory enzymes of maize crops under different N fertilization for two consecutive years 2021-2022.

View Article and Find Full Text PDF

Drought stress (DS) challenges sustainable agriculture production by limiting crop growth and development. The objective of the study was to evaluate the effect of melatonin-priming on enzymatic and non-enzymatic antioxidant defense mechanisms and its relation with leaf ultrastructure and stomatal traits in maize (Zea mays L) seedlings under DS (PEG-6000). DS drastically decreased seed germination, plant growth, and leaf chlorophyll content due to excessive reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Physiological changes and genome-wide alteration in gene expression were performed in soybean (Glycine max [L.] Merr.) roots exposed to AsⅢ (25 μmol/L) alone and supplemented with selenium nanoparticles (SeNPs) at the concentration of 10 and 25 μmol/L at the V2 growth stage.

View Article and Find Full Text PDF

Maize-soybean intercropping is practiced worldwide because of some of the anticipated advantages such as high crop yield and better utilization of resources (i.e., water, light, nutrients and land).

View Article and Find Full Text PDF

Photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE) are the two important factors affecting the photosynthesis and nutrient utilization of plant leaves. However, the effect of N fertilization combined with foliar application of Fe on the Pn and PNUE of the maize crops under different planting patterns (i.e.

View Article and Find Full Text PDF

Abundant nitrogen (N) fertilization is needed for maize (Zea mays L.) production in China because of its huge residual biomass return. However, excessive N fertilization has a negative impact on the soil ecosystem and environment, which contributes to climate change.

View Article and Find Full Text PDF

Sustainable reduction of fertilization with technology acquisition for improving soil quality and realizing green food production is a major strategic demand for global agricultural production. Introducing legume (LCCs) and/or non-legume cover crops (NLCCs) during the fallow period before planting main crops such as wheat and corn increases surface coverage, retains soil moisture content, and absorbs excess mineral nutrients, thus reducing pollution. In addition, the cover crops (CCs) supplement the soil nutrients upon decomposition and have a green manure effect.

View Article and Find Full Text PDF

Soil sustainability is based on soil microbial communities' abundance and composition. Straw returning (SR) and nitrogen (N) fertilization influence soil fertility, enzyme activities, and the soil microbial community and structure. However, it remains unclear due to heterogeneous composition and varying decomposition rates of added straw.

View Article and Find Full Text PDF

Nitrate nitrogen (NON) leaching increased with nitrogen (N) fertilization under high water supply to the field negatively affected the maize growth and performance. This study aimed to understand the mechanisms of NON leaching on a biochemical basis and its relationship with plant performance with 5 different doses (0, 200, 250, 300, 350 kg N ha) of N fertilizers under low (60%; LW) and high (80%; HW) water holding capacity. Soil and plant enzymes were observed at different growth stages (V9, R1, R3, and R6) of the maize, whereas the leachates were collected at 10-days intervals from the sowing date.

View Article and Find Full Text PDF

Melatonin is effective in modulating metabolism and regulating growth and development in many plants under biotic and abiotic stress. However, there is no systematic quantification of melatonin effects on maize growth, gas exchange, chlorophyll content, and the antioxidant defense system. A meta-analysis was conducted on thirty-two currently available published articles to evaluate the effect of stress types, study types, and maize varieties on response ratio (ln) of "melatonin" to "control (no melatonin)" on plant growth, enzyme activities, gas exchange parameters, and photosynthetic pigments.

View Article and Find Full Text PDF

Melatonin plays an important role in numerous vital life processes of animals and has recently captured the interests of plant biologists because of its potent role in plants. As well as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and/or as a direct free radical scavenger/indirect antioxidant. However, identifying a precise concentration of melatonin with an optimum nitrogen level for a particular application method to improve plant growth requires identification and clarification.

View Article and Find Full Text PDF

Irrigation and nitrogen (N) fertilization rates are widely used to increase crop growth and yield and promote the sustainable production of the maize crop. However, our understanding of irrigation and N fertilization in the soil microenvironment is still evolving, and further research on soil bacterial communities under maize crop with irrigation and N management in subtropical regions of China is needed. Therefore, we evaluated the responses of two irrigation levels (low and high irrigation water with 60 and 80% field capacity, respectively) and five N fertilization rates [i.

View Article and Find Full Text PDF

Waterlogging is one of the serious abiotic stresses that inhibits crop growth and reduces productivity. Therefore, investigating efficient waterlogging mitigation measures has both theoretical and practical significance. The objectives of the present research were to examine the efficiency of melatonin and KNO seed soaking and foliar application on alleviating the waterlogging inhibited growth performance of maize seedlings.

View Article and Find Full Text PDF