The integration of nanomaterials with DNA-based systems has emerged as a transformative approach in biosensing and therapeutic applications. Unique features of DNA, like its programmability and specificity, complement the diverse functions of nanomaterials, leading to the creation of advanced systems for detecting biomarkers and delivering treatments. Here, we review the developments in DNA-nanomaterial conjugates, emphasizing their enhanced functionalities and potential across various biomedical applications.
View Article and Find Full Text PDFDirectly activating CD8 T cells within the tumor through antigen-presenting cells (APCs) hold promise for tumor elimination. However, M2-like tumor-associated macrophages (TAMs), the most abundant APCs in tumors, hinder CD8 T cell activation due to inefficient antigen cross-presentation. Here, we demonstrated a personalized nanotherapeutic platform using surgical tumor-derived galactose ligand-modified cancer cell membrane (CM)-coated cysteine protease inhibitor (E64)-loaded mesoporous silica nanoparticles for postsurgical cancer immunotherapy.
View Article and Find Full Text PDFThe rapid development of microscaled piezoelectric energy harvesters has provided a simple and highly efficient way for building self-powered sensor systems through harvesting the mechanical energy from the ambient environment. In this work, a self-powered microfluidic sensor that can harvest the mechanical energy of the fluid and simultaneously monitor their characteristics was fabricated by integrating the flexible piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers with the well-designed microfluidic chips. Those devices could generate open-circuit high output voltage up to 1.
View Article and Find Full Text PDF