Semiconductor saturable absorber mirrors (SESAMs) have been regarded as a revolutionary technology for ultrafast mode-locked lasers, producing numerous landmark laser breakthroughs. However, the operating wavelength of existing SESAMs is limited to less than 3 µm. In this study, we create a 3-5 µm mid-infrared (MIR) SESAM by engineering an InAs/GaSb type-II superlattice.
View Article and Find Full Text PDFMultiple-stage interband cascade infrared photodetector (ICIP) is a new class of semiconductor infrared photodetector that exhibits improved device performance in terms of responsivity and detectivity. The design of the device structure and the electronic structure on superlattices and quantum wells assume abrupt interfaces. However, the emergence of possible interface segregation and atom exchange can only be determined experimentally, impacting the device performance.
View Article and Find Full Text PDFHigh-speed mid-wave infrared (MWIR) photodetectors have important applications in the emerging areas such high-precision frequency comb spectroscopy and light detection and ranging (LIDAR). In this work, we report a high-speed room-temperature mid-wave infrared interband cascade photodetector based on a type-II InAs/GaSb superlattice. The devices show an optical cut-off wavelength around 5 µm and a 3-dB bandwidth up to 7.
View Article and Find Full Text PDF