Natural products containing benzoheterocyclic skeletons are widely found in plants and exhibit various pharmacological activities. To address the current limited availability of these compounds, we herein demonstrate the production of benzopyran, furanocoumarins, and pyranocoumarins in by employing prenyltransferases and two substrate-promiscuous enzymes, XimD and XimE. To avoid the degradation in , furanocoumarins and pyranocoumarins were also successfully produced in .
View Article and Find Full Text PDFPolycyclic tetramate macrolactams (PTMs) are a widely distributed class of structurally complex natural products, and most of them exhibit multiple biological activities. However, the transcriptional regulators (TRs) involved in the regulation of PTM production have seldom been reported. Here, we identified three TRs, i.
View Article and Find Full Text PDFChem Commun (Camb)
December 2019
The production of secondary metabolites, while important for bioengineering purposes, presents a paradox in itself. Though widely existing in plants and bacteria, they have no definite physiological roles. Yet in both native habitats and laboratories, their production appears robust and follows apparent metabolic switches.
View Article and Find Full Text PDFThe pleiotropic transcriptional regulator AdpA positively controls morphological differentiation and regulates secondary metabolism in most species. 318 has a linear chromosome 5.96 Mb in size.
View Article and Find Full Text PDFPrenylated aromatic compounds are important intermediates in the biosynthesis of bioactive molecules such as 3-chromanols from plants, ubiquinones from prokaryotes and meroterpenoids from sponges. Biosynthesis of prenylated aromatic compounds using prokaryotic microorganisms has attracted increasing attention in the field of synthetic biology. In this study, we demonstrated that the production of 3-geranyl-4-hydroxybenzoic acid (GBA) and a variety of GBA analogues was feasible in a metabolically engineered E.
View Article and Find Full Text PDFPolycyclic tetramate macrolactams (PTMs) were identified as distinct secondary metabolites of the mangrove-derived Streptomyces xiamenensis 318. Together with three known compounds-ikarugamycin (1), capsimycin (2) and capsimycin B (3)-two new compounds, capsimycin C (4) with trans-diols and capsimycin D (5) with trans-configurations at C-13/C-14, have been identified. The absolute configurations of the tert/tert-diols moiety was determined in 4 by NMR spectroscopic analysis, CD spectral comparisons and semi-synthetic method.
View Article and Find Full Text PDFStreptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyces.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2016
Cytophaga hutchinsonii is a gliding cellulolytic bacterium that is ubiquitously distributed in soil. The mechanism by which C. hutchinsonii achieves cellulose digestion, however, is still largely unknown.
View Article and Find Full Text PDF