The initial irreversible capacity loss during the first charging process largely reduces the affordable energy and power density of sodium storage devices, and developing advanced materials is the efficient way to solve this problem, which is fraught with challenges. Herein, inspired by theoretical calculations and the high-entropy concept, a series of fewer layers of high-entropy metal-organic frameworks (FLHE-MOFs) are successfully fabricated, delivering an ultrahigh initial Coulombic efficiency (ICE) of 86.1% and excellent cycling performance, which is far more than that of the other electrode materials (generally <70%).
View Article and Find Full Text PDFSolid-state batteries can ensure high energy density and safety in lithium metal batteries, while polymer electrolytes are plagued by slow ion kinetics and low selective transport of Li . Metal-organic frameworks (MOFs) are proposed as emerging fillers for solid-state poly(ethylene oxide)(PEO) electrolytes, however, developing functionalized MOFs and understanding their roles on ion transfer has proven challenging. Herein, combining computational and experimental results, the functional group regulation in MOFs can effectively change surficial charge distribution and limit anion movement is revealed, providing a potential solution to these issues.
View Article and Find Full Text PDFTransition metal selenides anodes with fast reaction kinetics and high theoretical specific capacity are expected to solve mismatched kinetics between cathode and anode in Li-ion capacitors. However, transition metal selenides face great challenges in the dissolution and shuttle problem of lithium selenides, which is the same as Li-Se batteries. Herein, inspired by the density functional theory calculations, heterogeneous can enhance the adsorption of Li Se relative to single component selenide electrodes, thus inhibiting the dissolution and shuttle effect of Li Se.
View Article and Find Full Text PDFNanomicro Lett
September 2022
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems. Metal-organic frameworks (MOFs), as a new type of porous material, show the advantages of large specific surface area, high porosity, low density, and adjustable pore size, exhibiting a broad application prospect in the field of electrocatalytic reactions, batteries, particularly in the field of supercapacitors. This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials, as well as their applications in supercapacitors.
View Article and Find Full Text PDFInterfacial bonding strategy has been successfully applied to address the high overpotential issue of sacrificial additives, which reduced the decompositon potential of NaCO from 4.50 to 3.95 V.
View Article and Find Full Text PDFNowadays sodium-based energy storage systems (Na-based ESSs) have been widely researched as it possesses the possibility to replace traditional energy storage media to become next generation energy storage system. However, due to the irreversible loss of sodium ions in the first cycle, development of Na-based ESSs is limited. Presodiation, as a strategy of adding excess sodium ions to the system in advance, accomplishes the enhancement of electrochemical performance.
View Article and Find Full Text PDF