Publications by authors named "Xuhao Zhou"

Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.

View Article and Find Full Text PDF

Myocardial Infarction (MI) is a leading cause of death worldwide. Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling after MI. However, whether material-derived cues can treat MI through metabolic regulation is mainly unexplored.

View Article and Find Full Text PDF

Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage.

View Article and Find Full Text PDF

Cell patterning, allowing precise control of cell positioning, presents a unique advantage in the study of cell behavior. In this protocol, a cell patterning strategy based on the Magnetic-Archimedes (Mag-Arch) effect is introduced. This approach enables precise control of cell distribution without the use of ink materials or labeling particles.

View Article and Find Full Text PDF

Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging.

View Article and Find Full Text PDF

Single-nanoparticle detection has received tremendous interest due to its significance in fundamental physics and biological applications. Here, we demonstrate an optical nanofibre-enabled microfluidic sensor for the detection and sizing of nanoparticles. Benefitting from the strong evanescent field outside the nanofibre, a nanoparticle close to the nanofibre can scatter a portion of the field energy to the environment, resulting in a decrease in the transmitted intensity of the nanofibre.

View Article and Find Full Text PDF

Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks.

View Article and Find Full Text PDF

Polymer/metal-organic framework (MOF) composites have been widely studied for their favorable combination of polymer flexibility and MOF crystallinity. While traditional polymer-coated MOFs maximize the polymer properties at the surface, the dramatic loss of MOF porosity due to blockage by the nonporous polymeric coating remains a problem. Herein, we introduce intrinsically microporous synthetic allomelanin (AM) as a porous coating on the zirconium-based MOF (Zr-MOF) UiO-66 via an in situ surface-constrained oxidative polymerization of the AM precursor, 1,8-dihydroxynaphthalene (1,8-DHN).

View Article and Find Full Text PDF

Herein, we investigate synthetic routes to a close mimic of natural pheomelanin. Three different oxidative polymerization routes were attempted to generate synthetic pheomelanin, each giving rise to structurally dissimilar materials. Among them, the route employing 5-cysteinyl-dihydroxyphenylalanine (5-CD) as a monomer was verified as a close analogue of extracted pheomelanin from humans and birds.

View Article and Find Full Text PDF

Regeneration of smooth muscle cells (SMCs) is vital in vascular remodeling. Sca1 stem/progenitor cells (SPCs) can generate de novo smooth muscle cells after severe vascular injury during vessel repair and regeneration. However, the underlying mechanisms have not been conclusively determined.

View Article and Find Full Text PDF

Background: Post-traumatic massive hemorrhage demands immediately available first-aid supplies with reduced operation time and good surgical compliance. In-situ crosslinking gels that are flexibly adapting to the wound shape have a promising potential, but it is still hard to achieve fast gelation, on-demand adhesion, and wide feasibility at the same time.

Methods: A white-light crosslinkable natural milk-derived casein hydrogel bioadhesive is presented for the first time.

View Article and Find Full Text PDF

Infection can disturb the wound healing process and lead to poor skin regeneration, chronic wound, septicemia and even death. To combat the multi-drug resistance bacteria or fungi, it is urgent and necessary to develop advanced antimicrobial wound dressings. In this study, a composite hydrogel dressing composed of polyvinyl alcohol (PVA), agarose, glycerol and antibacterial hyperbranched polylysine (HBPL) was prepared by a freeze-thawing method.

View Article and Find Full Text PDF

Allomelanin is a class of nitrogen-free melanin mostly found in fungi and, like all naturally occurring melanins, is hydrophilic. Herein, we develop a facile method to modify synthetic hydrophilic allomelanin to yield hydrophobic derivatives through post-synthetic modifications. Amine-functionalized molecules of various kinds can be conjugated to allomelanin nanoparticles under mild conditions with high loading efficiencies.

View Article and Find Full Text PDF

Rationale: CD34 cells are believed being progenitors that may be used to treat cardiovascular disease. However, the exact identity and the role of CD34 cells in physiological and pathological conditions remain unclear.

Methods: We performed single-cell RNA sequencing analysis to provide a cell atlas of normal tissue/organ and pathological conditions.

View Article and Find Full Text PDF

Melanosomes in nature have diverse morphologies, including spheres, rods, and platelets. By contrast, shapes of synthetic melanins have been almost entirely limited to spherical nanoparticles with few exceptions produced by complex templated synthetic methods. Here, we report a non-templated method to access synthetic melanins with a variety of architectures including spheres, sheets, and platelets.

View Article and Find Full Text PDF

Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity.

View Article and Find Full Text PDF

Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis.

View Article and Find Full Text PDF

Perivascular tissue including adipose layer and adventitia have been considered to play pivotal roles in vascular development and disease progression. Recent studies showed that abundant stem/progenitorcells (SPCs) are present in perivascular tissues. These SPCs exhibit capability to proliferate and differentiate into specific terminal cells.

View Article and Find Full Text PDF

Background: As the most important component of the vascular wall, vascular smooth muscle cells (VSMCs) participate in the pathological process by phenotype transformation or differentiation from stem/progenitor cells. The main purpose of this study was to reveal the role and related molecular mechanism of microRNA-30c-5p (miR-30c-5p) in VSMC differentiation from adventitial progenitor cells expressing stem cell antigen-1(Sca-1).

Methods: In this study, we detected the expression of miR-30c-5p in human normal peripheral arteries and atherosclerotic arteries.

View Article and Find Full Text PDF

Human hair is naturally colored by melanin pigments, which afford myriad colors from black, to brown, to red depending on the chemical structures and specific blends. In recent decades, synthetic efforts have centered on dopamine oxidation to polydopamine, an effective eumelanin similar to the one found in humans. To date, only a few attempts at polydopamine deposition on human hair have been reported, and their translation to widespread usage and potential commercialization is still hampered by the harsh conditions employed.

View Article and Find Full Text PDF

Herein, we report the photoinitiated polymerization-induced self-assembly (photo-PISA) of spherical micelles consisting of proapoptotic peptide-polymer amphiphiles. The one-pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL ) with tunable peptide loadings up to 48 wt. %.

View Article and Find Full Text PDF

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin.

View Article and Find Full Text PDF

Harnessing metal-free photoinduced reversible-deactivation radical polymerization (photo-RDRP) in organic and aqueous phases, we report a synthetic approach to enzyme-responsive and pro-apoptotic peptide brush polymers. Thermolysin-responsive peptide-based polymeric amphiphiles assembled into spherical micellar nanoparticles that undergo a morphology transition to worm-like micelles upon enzyme-triggered cleavage of coronal peptide sidechains. Moreover, pro-apoptotic polypeptide brushes show enhanced cell uptake over individual peptide chains of the same sequence, resulting in a significant increase in cytotoxicity to cancer cells.

View Article and Find Full Text PDF

Allomelanin is a type of nitrogen-free melanin most commonly found in fungi. Its existence enhances resistance of the organisms to environmental damage and helps fungi survive harsh radiation conditions such as those found on spacecraft and inside contaminated nuclear power plants. We report the preparation and characterization of artificial allomelanin nanoparticles (AMNPs) oxidative oligomerization of 1,8-dihydroxynaphthalene (1,8-DHN).

View Article and Find Full Text PDF

The sustainable production of chemically recyclable polymers presents a significant opportunity to polymer scientists to tackle the growing environmental and energy problems of current petroleum-based plastics. Despite recent advances, however, there are still pressing needs for an expanded horizon of chemically recyclable polymers. Herein, we introduce a new paradigm of biosourced polythioesters (PTEs) with high polymerizability and complete recyclability under mild and economical conditions.

View Article and Find Full Text PDF