Optical time domain reflectometry (OTDR) is a key technique to characterize fabricated and installed optical fibers. It is also widely used in distributed sensing. OTDR of emerging hollow-core fibers (HCFs) has been demonstrated only very recently, being almost 30 dB weaker than that in the glass-core optical fibers.
View Article and Find Full Text PDFA main, yet-unsolved challenge in splicing hollow-core fiber (HCF) into standard single-mode fiber (SMF) systems lies in managing the strong Fresnel back-reflection that occurs when the light travels from the empty core of the HCF into the glass core of the SMF or vice versa. This impacts the performance of fiber systems that combine SMFs and HCFs due to effects such as multipath interference. Here, we demonstrate a new technique that combines angle-cleaving the HCF, which reduces the back-reflection, with offset-splicing the mode-field adapter to the SMF, which compensates for the refraction at the glass-air interface, enabling us to achieve low coupling loss.
View Article and Find Full Text PDFPotentially toxic elements (PTEs) posed a major hazard to microbial community in river sediments, but the way how different kinds of microorganisms responses to elements pollution has not been clearly understood. The target of this research was to discriminate the apposite indicators for diagnosing elements pollution based on the sensitivity of microbial abundance, biodiversity, predicted metabolic functions to PTEs (Cu, Cd, Cr, Ni, Pb, Zn, As and Hg). Considering Huaihe River Basin as the main subject, sediment samples were gathered from 135 sites.
View Article and Find Full Text PDFThe optical phase accumulated when light propagates through an optical fiber changes with temperature. It has been shown by various authors that this thermal phase sensitivity is significantly smaller in hollow core fibers (HCFs) than in standard single-mode fibers (SSMFs). However, there have been considerable differences in the level of sensitivity reduction claimed, with factors in the range ×3 to ×20 improvement for HCFs relative to SSMFs reported.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2021
Denitrification in river sediments plays a very important role in removing nitrogen in aquatic ecosystem. To gain insight into the key factors driving denitrification at large spatial scales, a total of 135 sediment samples were collected from Huaihe River and its branches located in the northern of Anhui province. Bacterial community composition and denitrifying functional genes (nirS, nirK, and nosZ) were measured by high-throughput sequencing and real-time PCR approaches.
View Article and Find Full Text PDF