Publications by authors named "Xuhao Dong"

As an essential physiological indicator within the human body, noninvasive continuous blood pressure (BP) measurement is critical in the prevention and treatment of cardiovascular disease. However, traditional methods of blood pressure prediction using a single-wavelength Photoplethysmographic (PPG) have bottlenecks in further improving BP prediction accuracy, which limits their development in clinical application and dissemination. To this end, this study proposed a method to fuse a four-wavelength PPG and a BP prediction model based on the attention mechanism of a convolutional neural network and bidirectional long- and short-term memory (ACNN-BiLSTM).

View Article and Find Full Text PDF

Due to the simplicity and convenience of PPG signal acquisition, the detection of the respiration rate based on the PPG signal is more suitable for dynamic monitoring than the impedance spirometry method, but it is challenging to achieve accurate predictions from low-signal-quality PPG signals, especially in intensive-care patients with weak PPG signals. The goal of this study was to construct a simple model for respiration rate estimation based on PPG signals using a machine-learning approach fusing signal quality metrics to improve the accuracy of estimation despite the low-signal-quality PPG signals. In this study, we propose a method based on the whale optimization algorithm (WOA) with a hybrid relation vector machine (HRVM) to construct a highly robust model considering signal quality factors to estimate RR from PPG signals in real time.

View Article and Find Full Text PDF