Publications by authors named "Xugui Xia"

Unsatisfied electrode bonding in half-Heusler devices renders thermal damage and large efficiency loss, which limits their practical service at high temperatures. Here, we develop a thermodynamic strategy to screen barrier layer elements. Theoretically, we found that the interface between VIIB elements and half-Heuslers possesses near-zero interfacial reaction energy and large atomic diffusion barrier.

View Article and Find Full Text PDF

Although the CoSb-based skutterudite thermoelectric devices have been highly expected for wide uses such as waste heat recovery and space power supply, the limited long-term service stability majorly determined by the degradation of electrode interface obstructs its applications. Here, we built up an effective criterion for screening barrier layer based on the combination of negative interfacial reaction energy and high activation energy barrier of Sb migration through the formed interfacial reaction layer. Accordingly, we predicted niobium as a promising barrier layer.

View Article and Find Full Text PDF

GeTe-based compounds have been intensively studied recently due to their superior thermoelectric performance, but their real applications are still limited so far due to the drastic volume variation that occurs during the rhombohedral-cubic phase transition, which may break the material or the material/electrode interface during service. Here, superior performance and high service stability for GeTe-based thermoelectric compounds are achieved by co-doping Mg and Sb into GeTe. The linear coefficient of thermal expansion before phase transition is greatly improved to match that after phase transition, yielding smooth volume variation around the phase transition temperature.

View Article and Find Full Text PDF

Electrical and thermal transportation properties of a novel structured 3D CNT network have been systematically investigated. The 3D CNT net work maintains extremely low thermal conductivity of only 0.035 W/(m K) in standard atmosphere at room temperature, which is among the lowest compared with other reported CNT macrostructures.

View Article and Find Full Text PDF