Publications by authors named "Xugang Ji"

Chemotherapeutic treatments are indispensable in the treatment of breast cancer. However, the emergence of multidrug-resistance, strong cell toxicity, and poor targeting selection has inhibited their clinical application. In this study, two synergistic drugs, doxorubicin (DOX) and curcumin (CUR), were co-administered to overcome multidrug resistance (MDR).

View Article and Find Full Text PDF

Purpose: A novel folate receptor-targeted β-cyclodextrin (β-CD) drug delivery vehicle was constructed to improve the bioavailability, biosafety, and drug loading capacity of curcumin. Controlled release and targeted delivery was achieved by modifying the nanoparticles with folic acid (FA).

Methods: Folate-conjugated β-CD-polycaprolactone block copolymers were synthesized and characterized.

View Article and Find Full Text PDF

Purpose: To develop microchannel-based preparation of curcumin (Cur)-loaded hybrid nanoparticles using enzyme-targeted peptides and star-shaped polycyclic lipids as carriers, and to accomplish a desirable targeted drug delivery via these nanoparticles, which could improve the bioavailability and antitumor effects of Cur.

Methods: The amphiphilic tri-chaintricarballylic acid-poly (ε-caprolactone)-methoxypolyethylene glycol (Tri-CL-mPEG) and the enzyme-targeted tetra-chain pentaerythritol-poly (ε-caprolactone)-polypeptide (PET-CL-P) were synthesized. The Cur-loaded enzyme-targeted hybrid nano-delivery systems (Cur-P-NPs) were prepared by using the microfluidic continuous granulation technology.

View Article and Find Full Text PDF

Background: Specific targeting ability and good cell penetration are two critical requirements of tumor-targeted delivery systems. In the present work, we developed a novel matrix metalloprotein-triggered, cell-penetrating, peptide-modified, star-shaped nanoparticle (NP) based on a functionalized copolymer (MePEG-Peptide-Tri-CL), with the peptide composed of GPLGIAG (matrix metalloprotein-triggered peptide for targeted delivery) and r9 (cell-penetrating peptide for penetration improvement) to enhance its biological specificity and therapeutic effect.

Results: Based on the in vitro release study, a sustained release profile was achieved for curcumin (Cur) release from the Cur-P-NPs at pH 7.

View Article and Find Full Text PDF

The limitations of anticancer drugs, including poor tumor targeting and weak uptake efficiency, are important factors affecting tumor therapy. According to characteristics of the tumor microenvironment, in this study, we aimed to synthesize matrix metalloproteinase (MMP)-responsive curcumin (Cur)-loaded nanoparticles (Cur-P-NPs) based on amphiphilic block copolymer (MePEG-peptide-PET-PCL) with MMP-cleavable peptide (GPLGIAGQ) and penetrating peptide (r9), modified to improve tumor targeting and cellular uptake. The average size of Cur-P-NPs was 176.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Xugang Ji"

  • - Xugang Ji's research primarily focuses on the development of innovative drug delivery systems, particularly utilizing targeting nanoparticles to enhance the therapeutic efficacy and bioavailability of anticancer agents, such as curcumin and doxorubicin, in tackling multidrug-resistant breast cancer.
  • - His studies highlight the incorporation of folate receptors and specific peptides to improve cellular targeting and penetration, addressing challenges related to poor drug uptake and resistance mechanisms inherent in cancer therapies.
  • - Recent findings include the successful synthesis of various nanoparticle formulations, such as folate-modified β-cyclodextrin nanoparticles and enzyme-targeted hybrid nanoparticles, which demonstrate sustained drug release profiles and improved antitumor activities in experimental models.