Background: Mitophagy is a crucial process involved in maintaining cellular homeostasis by selectively eliminating damaged or surplus mitochondria. As the kidney is an organ with a high dynamic metabolic rate and abundant mitochondria, it is particularly crucial to control mitochondrial quality through mitophagy. Dysregulation of mitophagy has been associated with various renal diseases, including acute and chronic kidney diseases, and therefore a better understanding of the links between mitophagy and these diseases may present new opportunities for therapeutic interventions.
View Article and Find Full Text PDFBackground: Impaired mitochondrial dynamics have been identified as a significant contributing factor to reduced neurogenesis under pathological conditions. However, the relationship among mitochondrial dynamics, neurogenesis, and spatial memory during normal development remains unclear. This study aims to elucidate the role of mitophagy in spatial memory mediated by neurogenesis during development.
View Article and Find Full Text PDFImmune checkpoint inhibition targeting the PD-1/PD-L1 pathway has become a powerful clinical strategy for treating cancer, but its efficacy is complicated by various resistance mechanisms. One of the reasons for the resistance is the internalization and recycling of PD-L1 itself upon antibody binding. The inhibition of lysosome-mediated degradation of PD-L1 is critical for preserving the amount of PD-L1 recycling back to the cell membrane.
View Article and Find Full Text PDFHutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal disease manifested by premature aging and aging-related phenotypes, making it a disease model for aging. The cellular machinery mediating age-associated phenotypes in HGPS remains largely unknown, resulting in limited therapeutic targets for HGPS. In this study, we showed that mitophagy defects impaired mitochondrial function and contributed to cellular markers associated with aging in mesenchymal stem cells derived from HGPS patients (HGPS-MSCs).
View Article and Find Full Text PDFLupus nephritis (LN) is one of the most severe manifestations of systemic lupus erythematosus (SLE), but its mechanism of onset remains unclear. Since impaired mitophagy has been implicated in multiple organs in SLE, we hypothesized that mitophagy dysfunction is critical in the development of LN and that pharmacologically targeting mitophagy would ameliorate this disease. Therefore, lupus-prone MRL/MpJ-Fas (MRL/lpr) and NZBWF1/J mice were treated with a novel mitophagy inducer, UMI-77, during their onset of LN.
View Article and Find Full Text PDFDespite advances in cancer treatment, immune checkpoint blockade (ICB) only achieves complete response in some patients, illustrating the need to identify resistance mechanisms. Using an ICB-insensitive tumor model, here we discover cisplatin enhances the anti-tumor effect of PD-L1 blockade and upregulates the expression of Ariadne RBR E3 ubiquitin-protein ligase 1 (ARIH1) in tumors. Arih1 overexpression promotes cytotoxic T cell infiltration, inhibits tumor growth, and potentiates PD-L1 blockade.
View Article and Find Full Text PDFSpatially resolved proteomics is an emerging approach for mapping proteome heterogeneity of biological samples, however, it remains technically challenging due to the complexity of the tissue microsampling techniques and mass spectrometry analysis of nanoscale specimen volumes. Here, we describe a spatially resolved proteomics method based on the combination of tissue expansion with mass spectrometry-based proteomics, which we call Expansion Proteomics (ProteomEx). ProteomEx enables quantitative profiling of the spatial variability of the proteome in mammalian tissues at ~160 µm lateral resolution, equivalent to the tissue volume of 0.
View Article and Find Full Text PDFAbnormal accumulation of TDP43-related mutant proteins in the cytoplasm causes amyotrophic lateral sclerosis (ALS). Herein, unbiased drug screening approaches showed that SC75741, a multi-target inhibitor, inhibited inflammation-induced aggregation by inhibiting NF-κB and also degraded already aggregated proteins by inhibiting c-Abl mediated autophagy-lysosomal pathway. We delineate the mechanism that SC75741 could markedly enhance TFEB nuclear translocation by an mTORC1-independent TFEB regulatory pathway.
View Article and Find Full Text PDFMitochondria play an essential role in supplying energy for the health and survival of neurons. Mitophagy is a metabolic process that removes dysfunctional or redundant mitochondria. This process preserves mitochondrial health.
View Article and Find Full Text PDFChaperone-mediated autophagy (CMA) is a lysosome-dependent selective degradation pathway implicated in the pathogenesis of cancer and neurodegenerative diseases. However, the mechanisms that regulate CMA are not fully understood. Here, using unbiased drug screening approaches, we discover Metformin, a drug that is commonly the first medication prescribed for type 2 diabetes, can induce CMA.
View Article and Find Full Text PDFCancer expression of PD-L1 suppresses anti-tumor immunity. PD-L1 has emerged as a remarkable therapeutic target. However, the regulation of PD-L1 degradation is not understood.
View Article and Find Full Text PDFMitochondrial dysfunction is associated with the occurrence of a variety of neurodegenerative diseases, especially Alzheimer disease (AD). As a mitochondrial quality control process, mitophagy is greatly inhibited in AD; increasing evidence shows that the induction of mitophagy is an effective therapeutic intervention strategy. However, the lack of more safe, effective, and clear mechanisms for mitophagy inducers has limited the clinical application.
View Article and Find Full Text PDFThere is increasing evidence that inducing neuronal mitophagy can be used as a therapeutic intervention for Alzheimer's disease. Here, we screen a library of 2024 FDA-approved drugs or drug candidates, revealing UMI-77 as an unexpected mitophagy activator. UMI-77 is an established BH3-mimetic for MCL-1 and was developed to induce apoptosis in cancer cells.
View Article and Find Full Text PDFThe complete genome of methanol-utilizing strain 239 was generated, revealing a single 7,237,391 nucleotide circular chromosome with 7074 annotated protein-coding sequences (CDSs). Comparative analyses against the complete genome sequences of strain MG417-CF17, strain U32 and strain HCCB10007 revealed a broad spectrum of genomic structures, including various genome sizes, core/quasi-core/non-core configurations and different kinds of episomes. Although polyketide synthase gene clusters were absent from the genome, 12 gene clusters related to the biosynthesis of other specialized (secondary) metabolites were identified.
View Article and Find Full Text PDFThe high-affinity biosynthetic pathway for converting acetate to acetyl-coenzyme A (acetyl-CoA) is catalyzed by the central metabolic enzyme acetyl-coenzyme A synthetase (Acs), which is finely regulated both at the transcriptional level via cyclic AMP (cAMP)-driven trans-activation and at the post-translational level via acetylation inhibition. In this study, we discovered that cAMP directly binds to Salmonella enterica Acs (SeAcs) and inhibits its activity in a substrate-competitive manner. In addition, cAMP binding increases SeAcs acetylation by simultaneously promoting Pat-dependent acetylation and inhibiting CobB-dependent deacetylation, resulting in enhanced SeAcs inhibition.
View Article and Find Full Text PDFIn the agl3EFGXYZ operon (SCO7167-SCO7162, abbreviated as agl3 operon) of Streptomyces coelicolor M145, agl3EFG genes encode a putative ABC-type carbohydrate transporter. The transcription of this operon has been proved to be repressed by Agl3R (SCO7168), a neighboring GntR-family regulator, and this repression can be released by growth on poor carbon sources. Here in this study, we prove that the transcription of agl3 operon is also directly repressed by GlnR, a central regulator governing the nitrogen metabolism in S.
View Article and Find Full Text PDFA novel Gram-stain-positive strain with sandy aerial mycelium and golden yellow substrate mycelium, designated fd2-tb, was isolated from a soil sample collected in Shanghai, China, and its taxonomic status was established by phylogenetic analysis. 16S rRNA gene sequence analysis showed that strain fd2-tb belonged to the genus and was related to JCM 19660 (99.9 % 16S rRNA gene sequence similarity), NBRC 12770 (99.
View Article and Find Full Text PDFStreptomyces sp. fd2-tb can produce streptothricin class antibiotics with broad antimicrobial spectra. To better understand the mechanism of streptothricin biosynthesis and to assess the capacity of this strain in secondary metabolism, we report the draft genome sequence of Streptomyces sp.
View Article and Find Full Text PDFThe transcription of amtB in Streptomyces coelicolor has been proposed to be counter-regulated by GlnR (a global regulator for nitrogen metabolism) and PhoP (a global regulator for phosphate metabolism). However, the GlnR-protected region, which was deduced to be two 22-bp GlnR binding boxes (gTnAc-n6-GaAAc-n6-GtnAC-n6-GAAAc-n6, abbreviated as a1-b1 and a2-b2), was separated from the PhoP-protected region in the promoter of amtB, leaving the mechanism for this regulation undefined. In this study, another 22-bp GlnR binding box, which consisted of a3-site-n6-b3-site (a3-b3) overlapping with the PhoP-binding sequences, was identified in the promoter region of amtB by a DNase I footprinting assay.
View Article and Find Full Text PDFAmycolatopsis mediterranei is used for industry-scale production of rifamycin, which plays a vital role in antimycobacterial therapy. As the first sequenced genome of the genus Amycolatopsis, the chromosome of strain U32 comprising 10,236,715 base pairs, is one of the largest prokaryotic genomes ever sequenced so far. Unlike the linear topology found in streptomycetes, this chromosome is circular, particularly similar to that of Saccharopolyspora erythraea and Nocardia farcinica, representing their close relationship in phylogeny and taxonomy.
View Article and Find Full Text PDF