Dams are increasingly disrupting natural river systems, yet studies investigating their impact on microbial communities at regional scale are limited. Given the indispensable role of bacterioplankton in aquatic ecosystems, 16S rRNA gene sequencing was performed to explore how these communities respond to dam-influenced environmental changes at the regional scale in the Shaying River Basin. Our findings revealed that cascade dams create distinct environments, shaping bacterioplankton communities near the dams differently from those in natural rivers.
View Article and Find Full Text PDFHuman land uses are a crucial driver of biodiversity loss in freshwater ecosystems, and most studies have focused on how cities or croplands influence alpha diversity while neglecting the changes in community composition (beta diversity), especially in algae. Here, we examined the taxonomic and functional composition of algae communities and their underlying drivers along the human land-use intensity gradient in the Huai River basin, the third largest basin in China. Our results indicated that the increased intensity of human land use caused biotic homogenization (decreasing compositional dissimilarity between sites) of algae communities in terms of both taxonomic and functional traits.
View Article and Find Full Text PDFThe impact of damming on river ecosystems has received increasing attention, but a comprehensive understanding of the occurrence, drivers and exposure risks of microplastic (MP) pollution in multigate dam-type rivers is lacking. We investigated the characteristics and abundance of MPs in water, sediment and biological tissues from samples collected in the vicinity of ten dams in the Shaying River basin and analyzed the effect of environmental and food web structural changes on MP accumulation in freshwater animals under the influence of dams. Dam construction affects the transportation, suspension, and deposition of MPs at different dam locations (upstream, reservoir, and downstream) by altering hydrodynamihas changed the migration process of MPs.
View Article and Find Full Text PDFWe experimentally miniaturized freshly laid eggs of the Chinese cobra (Elapidae) by removing ∼10% and ∼20% of original yolk. We tested if yolk-reduced eggs would produce 1) normal-sized hatchlings with invariant yolk-free body mass (and thus invariant linear size) but dramatically reduced or even completely depleted residual yolk, 2) smaller hatchlings with normal-sized residual yolk but reduced yolk-free body mass, or 3) smaller hatchlings of which both yolk-free body mass and residual yolk are proportionally reduced. Yolk quantity affected hatchling linear size (both snout-vent length and tail length) and body mass.
View Article and Find Full Text PDF