Stabilizing perovskite solar cells requires consideration of all defective sites in the devices. Substantial efforts have been devoted to interfaces, while stabilization of grain boundaries received less attention. Here, we report on a molecule tributyl(methyl)phosphonium iodide (TPI), which can convert perovskite into a wide bandgap one-dimensional (1D) perovskite that is mechanically robust and water insoluble.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) are promising to reduce the cost of photovoltaic system due to their low-cost raw materials and high-throughput solution process; however, fabrication of all the active layers in perovskite modules using a scalable solution process has not yet been demonstrated. Herein, the fabrication of highly efficient PSCs and modules in ambient conditions is reported, with all layers bladed except the metal electrode, by blading a 36 ± 9 nm-thick electron-transport layer (ETL) on perovskite films with a roughness of ≈80 nm. A combination of additives in phenyl-C -butyric acid methyl ester (PCBM) allows the PCBM to conformally cover the perovskites and still have a good electrical conductivity.
View Article and Find Full Text PDFThe interfaces of perovskite solar cells (PSCs) are important in determining their efficiency and stability, but the morphology and stability of imbedded perovskite-substrate interfaces have received less attention than have top interfaces. We found that dimethyl sulfoxide (DMSO), which is a liquid additive broadly applied to enhance perovskite film morphology, was trapped during film formation and led to voids at perovskite-substrate interfaces that accelerated the film degradation under illumination. Partial replacement of DMSO with solid-state carbohydrazide reduces interfacial voids.
View Article and Find Full Text PDFPerovskite light-emitting diodes (PeLEDs) are promising candidates for display and solid-state lighting, due to their tunable colors, high conversion efficiencies, and low cost. However, the performance of blue PeLEDs is far inferior to that of the near-infrared, red, and green counterparts. Here, the fabrication of pure-blue PeLEDs with an emission peak at 475 nm, a peak external quantum efficiency of 10.
View Article and Find Full Text PDFIntentional doping is the core of semiconductor technologies to tune electrical and optical properties of semiconductors for electronic devices, however, it has shown to be a grand challenge for halide perovskites. Here, we show that some metal ions, such as silver, strontium, cerium ions, which exist in the precursors of halide perovskites as impurities, can n-dope the surface of perovskites from being intrinsic to metallic. The low solubility of these ions in halide perovskite crystals excludes the metal impurities to perovskite surfaces, leaving the interior of perovskite crystals intrinsic.
View Article and Find Full Text PDFGrain boundaries have been established to impact charge transport, recombination and thus the power conversion efficiency of metal halide perovskite thin film solar cells. As a special category of grain boundaries, ferroelastic twin boundaries have been recently discovered to exist in both CHNHPbI thin films and single crystals. However, their impact on the carrier transport and recombination in perovskites remains unexplored.
View Article and Find Full Text PDFWe report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 10 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals.
View Article and Find Full Text PDFThe efficiencies of small-pixel perovskite photovoltaics have increased to above 24%, while most reported fabrication methods cannot be transferred to scalable manufacturing process. Here, we report a method of fast blading large-area perovskite films at an unprecedented speed of 99 mm/s under ambient conditions by tailoring solvent coordination capability. Combing volatile noncoordinating solvents to Pb and low-volatile, coordinating solvents achieves both fast drying and large perovskite grains at room temperature.
View Article and Find Full Text PDFWith power conversion efficiencies now reaching 24.2%, the major factor limiting efficient electricity generation using perovskite solar cells (PSCs) is their long-term stability. In particular, PSCs have demonstrated rapid degradation under illumination, the driving mechanism of which is yet to be understood.
View Article and Find Full Text PDFThe power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) are already higher than that of other thin film technologies, but laboratory cell-fabrication methods are not scalable. Here, we report an additive strategy to enhance the efficiency and stability of PSCs made by scalable blading. Blade-coated PSCs incorporating bilateral alkylamine (BAA) additives achieve PCEs of 21.
View Article and Find Full Text PDFAlthough the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CHNHPbI perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO (mp-TiO)/CHNHPbI/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI () solution to control the perovskite crystal properties, and observed an abnormal CHNHPbI grain growth phenomenon atop mesoporous TiO film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI to CHNHPbI, and discuss the PbI nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CHNHPbI grains with different morphology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2017
NiO is a promising hole-transporting material for perovskite solar cells due to its high hole mobility, good stability, and easy processability. In this work, we employed a simple solution-processed NiO film as the hole-transporting layer in perovskite solar cells. When the thickness of the perovskite layer increased from 270 to 380 nm, the light absorption and photogenerated carrier density were enhanced and the transporting distance of electron and hole would also increase at the same time, resulting in a large charge transfer resistance and a long hole-extracted process in the device, characterized by the UV-vis, photoluminescence, and electrochemical impedance spectroscopy spectra.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2016
We report herein perovskite solar cells using solution-processed silver nanowires (AgNWs) as transparent top electrode with markedly enhanced device performance, as well as stability by evaporating an ultrathin transparent Au (UTA) layer beneath the spin-coated AgNWs forming a composite transparent metallic electrode. The interlayer serves as a physical separation sandwiched in between the perovskite/hole transporting material (HTM) active layer and the halide-reactive AgNWs top-electrode to prevent undesired electrode degradation and simultaneously functions to significantly promote ohmic contact. The as-fabricated semitransparent PSCs feature a Voc of 0.
View Article and Find Full Text PDF