The original motor imagery electroencephalography (MI-EEG) data contains not only temporal features but also a large number of spatial features related to the distribution of electrodes on the brain. However, in the process of MI-EEG decoding, most of the current convolutional neural network (CNN) based methods do not make the utmost of the spatial features related to electrode distribution.In this study, we adopt a concise 3D representation for the MI-EEG data to take full advantage of the spatial features and propose a two-branch 3D CNN (TB-3D CNN) for the 3D representation of MI-EEG data.
View Article and Find Full Text PDF