Publications by authors named "Xueyou Tan"

SnS-based carbon composites have garnered considerable concentration as prospective anode materials (AMs) for lithium-ion batteries (LIBs). Nevertheless, most SnS-based carbon composites underwent a two-phase or multistep preparation process and exhibited unsatisfactory LIB performance. In this investigation, we introduce a straightforward and efficient one-step arc-discharge technique for the production of dual-layer carbon-coated tin sulfide nanoparticles (SnS@C).

View Article and Find Full Text PDF

Enhancing the exchange interaction between magnetic ions is a long-term target in molecular magnetism. Endohedral metallofullerenes (EMFs) provide a possibility for achieving such a goal by imprisoning multiple magnetic centers inside the confined inner space of a fullerene cage. Here, we report a new member of dimetallic azafullerene Dy2@C79N via crystallographic determination for the first time.

View Article and Find Full Text PDF

Palladium nanoparticles with a diameter of 2-4 nm supported on nitrogen and boron dual-doped single-wall carbon nanohorns (Pd-NBCNHs) are synthesized a one-step method and their electrocatalytic activities are investigated for the oxygen reduction reaction (ORR) in alkaline media. The electrochemical results demonstrate that the oxygen reduction peak potential of Pd-NBCNHs is similar to that of commercial 20% Pt-C. Furthermore, Pd-NBCNHs show a more positive half-wave potential than 20% Pt-C and display better long-term stability and resistance to methanol than 20% Pt-C, which is attributed to the synergetic effect of the Pd nanoparticles and NBCNHs.

View Article and Find Full Text PDF

A novel multifunctional aggregation-induced emission (AIE) nanoaggregate for targeted imaging and enzyme-triggered chemotherapy was successfully fabricated via a one-step assembly. In this system, a quaternary ammonium-modified tetraphenylethene derivative (QA-TPE) acted as the AIE fluorophore as well as the chemotherapeutic agent, and a water-soluble acidic polysaccharide, hyaluronic acid (HA) acted as the aggregation-inducing scaffold, AIE turn-on agent, and targeting agent for CD44 receptor-mediated cancer cells. More importantly, HA endowed the QA-TPE/HA nanoaggregate both good biocompatibility and hysteretic chemotherapy activity, which were achieved by controlling the release of QA-TPE using the endogenous HAase in CD44 receptor-mediated cancer cells.

View Article and Find Full Text PDF

The construction of advanced phototherapy systems with high therapeutic efficacy toward cancer and low side effects, especially targeted species, is highly desirable. Herein, we developed one kind of water-soluble hyaluronic acid-hybridized polyaniline nanoparticles (HA-PANI NPs) as a nanoplatform for photothermal therapy (PTT) with targeted specificity of a CD44-mediated cancer cell. The water-soluble HA-PANI NPs were fabricated by one-step oxidative polymerization using aniline as a polymerizable monomer and HA as a stabilizer and targeted agent, where non-covalent electrostatic interaction between the negatively charged polymer HA and the cationic polymer PANI drives the formation of HA-PANI NPs.

View Article and Find Full Text PDF