Publications by authors named "Xueyi Wan"

Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei.

View Article and Find Full Text PDF

The dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA (caRNA) . Chromatin complex compositions change during cellular differentiation and aging, and are expected to be highly heterogeneous among terminally differentiated single cells . Here we introduce the Multi-Nucleic Acid Interaction Mapping in Single Cell (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression, and RNA-chromatin associations within individual nuclei.

View Article and Find Full Text PDF

We describe PROPER-seq (protein-protein interaction sequencing) to map protein-protein interactions (PPIs) en masse. PROPER-seq first converts transcriptomes of input cells into RNA-barcoded protein libraries, in which all interacting protein pairs are captured through nucleotide barcode ligation, recorded as chimeric DNA sequences, and decoded at once by sequencing and mapping. We applied PROPER-seq to human embryonic kidney cells, T lymphocytes, and endothelial cells and identified 210,518 human PPIs (collected in the PROPER v.

View Article and Find Full Text PDF

Recent studies have examined the role of attention in retaining bound representations in working memory (WM) and found that object-based attention plays a pivotal role. However, no study has investigated whether maintaining bound representations with more features in WM requires extra object-based attention. We investigated this by examining whether a secondary task consuming object-based attention was more disruptive to the maintenance of bindings in WM when more features were stored per object.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri-regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed.

View Article and Find Full Text PDF

Previous studies have suggested that retaining bindings in working memory (WM) requires more object-based attention than retaining constituent features. However, we still need to address the object-based attention hypothesis to determine both the generality (Does the object-based attention hypothesis of binding apply to feature bindings other than those tested?) and the reality (Was the observed effect in previous studies an artifact of the testing process?). We addressed these two issues by focusing on the binding of integral features, which was ignored in previous studies.

View Article and Find Full Text PDF

Brain tumors are dynamic complex ecosystems with multiple cell types. To model the brain tumor microenvironment in a reproducible and scalable system, we developed a rapid three-dimensional (3D) bioprinting method to construct clinically relevant biomimetic tissue models. In recurrent glioblastoma, macrophages/microglia prominently contribute to the tumor mass.

View Article and Find Full Text PDF

It has been suggested that retaining bindings in working memory (WM) requires more object-based attention than retaining constituent features. Recent studies have found that when memorized stimuli are presented sequentially, the most recent stimulus is in a highly accessible privileged state such that it is retained in a relatively automatic and resource-free manner, whereas the other stimuli are in a non-privileged state. The current study investigated whether the activation states of WM modulate the role of object-based attention in retaining bindings in WM.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in 3D bioprinting technology allow for the creation of complex tissue scaffolds quickly and efficiently, essential for biomedical applications.
  • The newly developed high throughput 3D bioprinter (HT-3DP) can produce customizable 3D samples in multiwell plates, which is crucial for analyzing their effects in cell cultures.
  • The study demonstrates the successful fabrication of live cancer tissue scaffolds and dual-cell types, highlighting its potential for rapid drug testing and disease modeling in a laboratory setting.
View Article and Find Full Text PDF

We make use of discrete yet meaningful events to orient ourselves to the dynamic environment. Among these events, biological motion, referring to the movements of animate entities, is one of the most biologically salient. We usually encounter biological motions of multiple human beings taking place simultaneously at distinct locations.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), as the fifth most common malignant cancer, develops and progresses mostly in a cirrhotic liver where stiff nodules are separated by fibrous bands. Scaffolds that can provide a 3D cirrhotic mechanical environment with complex native composition and biomimetic architecture are necessary for the development of better predictive tissue models. Here, we developed photocrosslinkable liver decellularized extracellular matrix (dECM) and a rapid light-based 3D bioprinting process to pattern liver dECM with tailorable mechanical properties to serve as a platform for HCC progression study.

View Article and Find Full Text PDF