Publications by authors named "Xueyan Nan"

Amphiphilic materials can be used for sample preparation of chromatography or mass spectrometry. Amphiphilic materials with magnetic properties in combination with magnetic suction devices allow for automated sample preparation. However, conventional synthesis methods are cumbersome and not suitable for the mass production of the material.

View Article and Find Full Text PDF

Mass cytometry (MC) is an emerging bioanalytical technique for high-dimensional biomarkers interrogation simultaneously on individual cells. However, the sensitivity and multiplexed analysis ability of MC was highly restricted by the current metal chelating polymer (MCP) mass tags. Herein, a new design strategy for MC mass tags by using a commercial available and low cost classical material, polystyrene nanoparticle (PS-NP) to carry metals was reported.

View Article and Find Full Text PDF

An approach to prepare monodisperse polystyrene microspheres with aggregation-induced emission (AIE) characteristics has been developed which shows promising applications in fluorescence-encoding. The micron-sized, monodisperse polystyrene microspheres with AIE molecules were perfectly synthesized by two-stage dispersion polymerization. Fluorescent AIE monomer was synthesized by Suzuki reaction, confirmed by nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Lonidamine (LND) can act on mitochondria and inhibit energy metabolism in cancer cells and therefore has been used together with chemotherapy drugs for synergistically enhanced therapeutic efficacy. However, its use is hindered by the poor solubility and slow diffusion in the cytoplasm. To address these problems, we designed and prepared aqueous dispersible nanoparticles (NPs) containing integrated components including triphenylphosphine (TPP) to target the mitochondria of cells and LND and doxorubicin (DOX) for synergistic cancer treatment and conquering drug resistance.

View Article and Find Full Text PDF

Hybrid nanostructures with combined functionalities can be rationally designed to achieve synergistic effects for efficient cancer treatment. Herein, a multifunctional nanoplatform is constructed, containing an inner core of an anticancer drug MTX surrounding by a nanometer-thin layer of gold as the shell with FeO magnetic nanoparticles (NPs) evenly distributed in the gold layer, and the outermost hybrid LA-PEG-MTX molecules as surface coating agent (denoted as MFG-LPM NPs). This nanocomposite possesses very high drug loading capacity as the entire core is MTX and integrates magnetic- and active- targeting drug delivery, light-controlled drug release, magnetic resonance imaging (MRI), as well as photothermal and chemotherapy.

View Article and Find Full Text PDF

The effects in HeLa cell membrane permeability caused by the fullerenols C(OH) with different concentrations were studied by scanning electrochemical microscopy (SECM). We demonstrate that C(OH) has very low cytotoxicity, although it can still have strong effects on the cell membrane permeability. In the presence of 1 × 10 mg mL (1 ppm) C(OH), the cell membrane permeability increases by 26% after 76 min, which is reversible.

View Article and Find Full Text PDF

In this paper, shape regulated anticancer activities as well as systematic toxicities of hydroxycamptothecin nanorods and nanoparticles (HCPT NRs and NPs) were systematically studied. In vitro and in vivo therapeutic efficacies were evaluated in cancer cells and tumor-bearing mice, indicating that NRs possessed superior antitumor efficacy over NPs at the equivalent dose, while systematic toxicity of the differently shaped nanodrugs assessed in healthy mice, including the maximum tolerated dose, blood analysis and histology examinations and so on, suggested that the NRs also caused higher toxicities than NPs, and also had a long-term toxicity. These results imply that the balance between anticancer efficiency and systematic toxicity of drug nanocrystals should be fully considered in practice, which will provide new concept in the future design of drug nanocrystals for cancer therapy.

View Article and Find Full Text PDF