Publications by authors named "Xueyan Jia"

Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.

Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.

View Article and Find Full Text PDF

The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP.

View Article and Find Full Text PDF

Bletilla striata (Thunb.) Reichb.f is renowned for its traditional medicinal applications and a spectrum of pharmacological activities, which is intricately linked to militarine.

View Article and Find Full Text PDF

Background: In acute liver injury (ALI), cell membrane damage could induce an inflammatory response and oxidative stress. As a membrane glycerophospholipid, plasmalogens (PLS) are crucial in regulating the cell membrane properties and exhibit beneficial effects in various liver diseases. However, the specific regulatory effects of PLS in the ALI remain unknown.

View Article and Find Full Text PDF

The sensorimotor cortex participates in diverse functions with different reciprocally connected subregions and projection-defined pyramidal neuron types therein, while the fundamental organizational logic of its circuit elements at the single-cell level is still largely unclear. Here, using mouse Cre driver lines and high-resolution whole-brain imaging to selectively trace the axons and dendrites of cortical pyramidal tract (PT) and intratelencephalic (IT) neurons, we reconstructed the complete morphology of 1,023 pyramidal neurons and generated a projectome of 6 subregions within the sensorimotor cortex. Our morphological data revealed substantial hierarchical and layer differences in the axonal innervation patterns of pyramidal neurons.

View Article and Find Full Text PDF

Arctium lappa L. polysaccharide (ALP) is a prominent bioactive compound renowned for its multifaceted functional properties, including anti-inflammatory, antioxidant, antifibrotic, immunomodulatory, and pro-apoptotic effects. This study evaluated the aging-delaying effect of ALP and its mechanisms using a D-galactose (D-gal)-induced aging model.

View Article and Find Full Text PDF

Dynamic gain control of aversive signals enables adaptive behavioral responses. Although the role of amygdalar circuits in aversive processing is well established, the neural pathway for amplifying aversion remains elusive. Here, we show that the brainstem circuit linking the interpeduncular nucleus (IPN) with the nucleus incertus (NI) amplifies aversion and promotes avoidant behaviors.

View Article and Find Full Text PDF

The brain atlas is essential for exploring the anatomical structure and function of the brain. Non-human primates, such as cynomolgus macaque, have received increasing attention due to their genetic similarity to humans. However, current macaque brain atlases only offer coarse sections with intervals along the coronal direction, failing to meet the needs of single-cell resolution studies in functional and multi-omics research of the macaque brain.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on improving breast cancer prognosis by creating a new deep learning model that predicts disease-free survival (DFS) using preoperative data from pathology imaging and molecular insights.* -
  • The DeepClinMed-PGM model was trained on a total of 1,020 patients across various cohorts, showing significantly improved prediction accuracy, with AUC values reaching as high as 0.979 in the training cohort.* -
  • The findings suggest that integrating multiple data types can enhance prediction accuracy for breast cancer, paving the way for more personalized treatment options based on individual patient information.*
View Article and Find Full Text PDF
Article Synopsis
  • Mapping single-neuron projections in the hippocampus (HIP) is crucial to grasping how the brain's connectivity and functions work.
  • Researchers reconstructed over 10,000 single-neuron projectomes and identified 43 distinct subtypes based on their projection patterns.
  • The study revealed that projection characteristics vary based on neuron location in the HIP and highlighted wiring diagrams for neurons connecting within the HIP and to other brain regions, informing us about their functional roles.
View Article and Find Full Text PDF
Article Synopsis
  • Militarine is a significant secondary metabolite found in various medicinal orchids, acting as both a plant growth inhibitor and a quality marker for medicinal materials.
  • It has strong medicinal potential for treating a variety of diseases, such as lung injuries, cognitive impairments, and tumors, and is being explored as a natural source for drug development.
  • The study reviews Militarine's properties, biosynthesis, and regulatory mechanisms, focusing on optimizing its production and applications in medicine through advanced research techniques.
View Article and Find Full Text PDF

The gastric mucosa (GM) is the first barrier and vital interface in the stomach that protects the host from hydrochloric acid in gastric juice and defends against exogenous insults to gastric tissues. The use of traditional Chinese medications (TCMs) for the treatment of gastric mucosal injury (GMI) has long-standing history and a good curative effect. Whereas there are poor overall reports on the intrinsic mechanisms of these TCM preparations that pharmacology uses to protect body from GMI, which is crucial to treating this disease.

View Article and Find Full Text PDF

Background: Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons.

View Article and Find Full Text PDF

Resin embedding combined with ultra-thin sectioning has been widely used in microscopic and electron imaging to acquire precise structural information of biological tissues. However, the existing embedding method was detrimental to quenchable fluorescent signals of precise structures and pH-insensitive fluorescent dyes. Here, we developed a low-temperature chemical polymerization method named HM20-T to maintain weak signals of various precise structures and to decrease background fluorescence.

View Article and Find Full Text PDF

Motivation: Reconstructing and analyzing all blood vessels throughout the brain is significant for understanding brain function, revealing the mechanisms of brain disease, and mapping the whole-brain vascular atlas. Vessel segmentation is a fundamental step in reconstruction and analysis. The whole-brain optical microscopic imaging method enables the acquisition of whole-brain vessel images at the capillary resolution.

View Article and Find Full Text PDF

Visualizing the relationships and interactions among different biological components in the whole brain is crucial to our understanding of brain structures and functions. However, an automatic multicolor whole-brain imaging technique is still lacking. Here, we developed a multicolor wide-field large-volume tomography (multicolor WVT) to simultaneously acquire fluorescent signals in blue, green, and red channels in the whole brain.

View Article and Find Full Text PDF

Axonal projection conveys neural information. The divergent and diverse projections of individual neurons imply the complexity of information flow. It is necessary to investigate the relationship between the projection and functional information at the single neuron level for understanding the rules of neural circuit assembly, but a gap remains due to a lack of methods to map the function to whole-brain projection.

View Article and Find Full Text PDF

The zona incerta (ZI) is involved in various functions and may serve as an integrative node of the circuits for global behavioral modulation. However, the long-range connectivity of different sectors in the mouse ZI has not been comprehensively mapped. Here, we obtained whole-brain images of the input and output connections via fluorescence micro-optical sectioning tomography and viral tracing.

View Article and Find Full Text PDF

Background: Muscle relaxation training is a method of gradually relaxing the whole body by consciously controlling the process of muscle contraction and relaxation, which is mostly used to improve the physical and mental health of breast cancer patients and improve the quality of life of patients. We conducted a systematic review to compare the effects of muscle relaxation training and conventional nursing on the psychological health and quality of life (QoL) of breast cancer patients. The results of this study provide a basis for nursing program selection of breast cancer patients.

View Article and Find Full Text PDF

Neurons in the primary auditory area (AUDp) innervate multiple brain regions with long-range projections while receiving informative inputs for diverse functions. However, the brain-wide connections of these neurons have not been comprehensively investigated. Here, we simultaneously applied virus-based anterograde and retrograde tracing, labeled the connections of excitatory and inhibitory neurons in the mouse AUDp, and acquired whole-brain information using a dual-channel fluorescence micro-optical sectioning tomography system.

View Article and Find Full Text PDF

Resin embedding of multi-color labeled whole organs is the primary step to preserve structural information for visualization of fine structures in three dimensions. It is essential to study the morphological characteristics, spatial and positional relationships of the millions of neurons, and the intricate network of blood vessels with fluorescent labels in the brain. However, the current resin embedding method is inadequate because of incompatibilities with fluorescent dyes, making it difficult to reconstruct a variety of structures for the interpretation of their complex spatial relationships.

View Article and Find Full Text PDF

The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR.

View Article and Find Full Text PDF

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative.

View Article and Find Full Text PDF

The microscopic visualization of large-scale three-dimensional (3D) samples by optical microscopy requires overcoming challenges in imaging quality and speed and in big data acquisition and management. We report a line-illumination modulation (LiMo) technique for imaging thick tissues with high throughput and low background. Combining LiMo with thin tissue sectioning, we further develop a high-definition fluorescent micro-optical sectioning tomography (HD-fMOST) method that features an average signal-to-noise ratio of 110, leading to substantial improvement in neuronal morphology reconstruction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc66kjd5vkkdhh5tni3och58b1mm6b394): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once