Seneca Valley virus (SVV), a new member of Picornaviridae, causes idiopathic vesicular symptoms in pregnant sows and acute death in neonatal piglets, considerably damaging the swine industry. The viral protease 3C (3C) cleaves host immune-related molecules to create a favorable environment for viral replication. In this study, we found that mRNA decapping enzyme 1A (DCP1A) is a novel antiviral effector against SVV infection that targets 3D viral RNA-dependent RNA polymerase for OPTN-mediated autophagic degradation.
View Article and Find Full Text PDFSeneca Valley virus (SVV) is an emerging pathogen that causes severe vesicular diseases in swine, posing a significant threat to the global pork industry. DNA and RNA viruses manipulate the host DNA damage response (DDR) to modulate cellular machinery and facilitate their life cycles. However, the interaction between the host DDR and SVV infection remains unexplored.
View Article and Find Full Text PDFUnlabelled: Seneca Valley virus (SVV) is a newly identified pathogen that poses a notable threat to the global pig industry. SVV has evolved multiple strategies to evade host antiviral innate immune responses. However, the underlying molecular mechanisms have not yet been fully elucidated.
View Article and Find Full Text PDFObjectives: To describe the carriage rate, serotype distribution, and antimicrobial susceptibility patterns of () nasopharyngeal (NP) isolates among healthy children aged 30 days to <60 months in the cities of Beijing and Shenzhen during 2018-2021.
Methods: A NP swab sample was collected among four annual cohorts of healthy children at routine well-child visits. was identified by culture, optochin sensitivity and bile solubility, serotypes determined by latex agglutination and Quellung, and antimicrobial susceptibility testing performed using E-test strips.
Avian influenza virus (AIV) causes huge losses to the global poultry industry and poses a threat to humans and other mammals. Fast, sensitive, and portable diagnostic methods are essential for efficient avian influenza control. Here, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a based platform was developed to detect AIV.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) remains one of the most economically significant pathogens that seriously affect the global swine industry. Despite sustained efforts, the factors that affect PRRSV replication in host cells are far from being fully elucidated and thus warrants further investigation. In this study, we first demonstrated that PRRSV infection can cause downregulation of endogenous p21 protein in MARC-145 cells in a virus dose-dependent manner.
View Article and Find Full Text PDFThe nonstructural protein 10 (nsp10) of porcine reproductive and respiratory syndrome virus (PRRSV) encodes for helicase which plays a vital role in viral replication. In the present study, a truncated form of nsp10, termed nsp10a, was found in PRRSV-infected cells and the production of nsp10a was strain-specific. Mass spectrometric analysis and deletion mutagenesis indicated that nsp10a may be short of about 70 amino acids in the N terminus of nsp10.
View Article and Find Full Text PDFBackground: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses.
View Article and Find Full Text PDFBackground: Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of PRRS, has two distinct and highly diverse genotypes (genotype 1 and genotype 2) in the field. Accurate diagnosis and differentiation of the two genotypes of PRRSV are critical to the effective prevention and control of PRRS. The non-structural protein 10 (Nsp10) plays a vital role in viral replication and is one of the most conserved proteins of PRRSV, thus constituting a good candidate for PRRSV diagnosis.
View Article and Find Full Text PDFAvian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli.
View Article and Find Full Text PDFBackground: The NS1 protein of avian influenza virus (AIV) is an important virulent factor of AIV. It has been shown to counteract host type I interferon response, to mediate host cell apoptosis, and to regulate the process of protein synthesis. The identification of AIV epitopes on NS1 protein is important for understanding influenza virus pathogenesis.
View Article and Find Full Text PDF