Publications by authors named "Xuexia Lin"

Nitrite is one of the most common nitrogenous compounds, which is not only an important indicator of aquaculture water but also widely used as a food additive. Its potential toxicity poses a huge threat to aquatic products and human health. Therefore, it is important to develop a convenient and rapid sensor for the high-efficient onsite detection of nitrite.

View Article and Find Full Text PDF

Hierarchical-porous-structured materials have been widely used in the field of electromagnetic wave (EMW) absorption, playing a critical role in minimizing EMW interference and pollution. High-quality EMW absorbers, characterized by a lower thickness, lighter weight, wider absorption band, and stronger absorption capacity, have been instrumental in reducing damage and preventing malfunctions in the automotive and aviation industries. The utilization of discarded nut shells through recycling can not only alleviate environmental problems but relieve resource constraints.

View Article and Find Full Text PDF

Antibiotics are considered a new type of organic pollutant. Antibiotic residues have become a global issue due to their harm to human health. As the use of antibiotics is increasing in human life, such as in medicine, crops, livestock, and even drinking water, the accurate analysis of antibiotics is very vital.

View Article and Find Full Text PDF

Antibiotics have become a new type of environmental pollutant due to their extensive use. High-performance adsorbents are of paramount significance for a cost-effective and environmentally friendly strategy to remove antibiotics from water environments. Herein, we report a novel annular mesoporous carbon (MCN), prepared by phenolic resin and triblock copolymer F127, as a high-performance adsorbent to remove penicillin, streptomycin, and tetracycline hydrochloride from wastewater.

View Article and Find Full Text PDF

Cell density is important for tumour metastasis, treatment and prognosis. Characterizing changes in cell density for electrochemotherapy (ECT) can reveal sub-populations in pathological states, and adjust treatment program. In this work, a simple and convenient microfluidic platform was developed to study the effect cell density on ECT by integrating the improved cell gradient generator, cell culture chamber and indium tin oxide interdigital electrodes.

View Article and Find Full Text PDF

This study aimed to uncover transcription factors that regulate super-enhancers involved in glucose metabolism reprogramming in poorly differentiated thyroid carcinoma (PDTC). TCA cycle and pyruvate metabolism were significantly enriched in PDTC. Differentially expressed genes in PDTC vs.

View Article and Find Full Text PDF

Human papillomavirus (HPV), is a common spherical DNA virus that can lead to six types of cancers later in life, which has recently garnered human's attention. Microchip capillary electrophoresis (MCE) has provided simple, fast, portable, and sensitive HPV typing assay assisted by a variety of signal amplification technologies. This review presents the latest research progress of MCE in routine HPV typing assays, including both of the MCE techniques and MCE combined with the nucleic acid amplification techniques for HPV assay.

View Article and Find Full Text PDF

In this work, a simple and rapid method based on the lateral flow assay (LFA) has been developed for the detection of dual antibiotics. To achieve the quantitative assay and to reduce the non-specific adsorption, an internal system has been developed. A non-specific DNA was exploited as an internal standard and could be recognized by the DNA marker that was coated at the internal line.

View Article and Find Full Text PDF

A convenient, facile, and mask-free approach assay was developed for single-cell study by using a combination of inkjet printing technology and polydimethylsiloxane (PDMS) microchip-assisted processing. The inkjet printing technology resulted in 91% of the single-cell occupancy by individually spraying MCF-7 cells on a hydrophobic substrate and enabled the control over the number of cells with precision by strictly optimizing the printing parameters. Further, the microchip containing a cell chamber and straight channels was attached to the glass slide to explore the real-time performance of the cells.

View Article and Find Full Text PDF

In this study, a convenient assay method has been developed based on labeled functional nucleic acids (H-DNA) and a competitive fluorescent lateral flow immunoassay (CF-LFI) for ampicillin (AMP) detection. Herein, we designed the tunable AMP probes for AMP detection based on the AMP aptamer, and the secondary DNA fragment. The probes can generate tunable signals on the test line (T line) and control line (C line) according to the concentration of AMP.

View Article and Find Full Text PDF

Introduction: This study aims to explore the effects of microRNA-1286 (miR-1286) on the development of non-small cell lung cancer (NSCLC) via the aerobic glycolysis pathway by targeting pyruvate kinase muscle isozyme M2 (PKM2).

Material And Methods: The mRNA levels of miR-1286 in NSCLC tissues and mouse tumor tissues were detected by q-PCR. MiR-1286 was knocked down and overexpressed separately in A549 cells.

View Article and Find Full Text PDF

Herein, we demonstrate the fabrication of innovative pH-activable carbon nanoparticles (CNPs) based on urea and citric acid by microwave-assisted green synthesis for application in cell imaging. These CNP-based nanoprobes offer significant advantages of pH responsiveness and excellent biocompatibility. The pH responsiveness ranges from 1.

View Article and Find Full Text PDF

Despite the success in long-term storage of food and dietary products using antibiotics as supplements, enormous levels of their residues have remained as a significant health concern, leading to severe toxicity issues on consumption. Herein, we report an ultrasensitive and highly selective aptasensor based on carbon nanoparticles (CNPs) through a fluorescence-based aptamer-linked immunosorbent assay (FALIA) for rapid detection of kanamycin (KAA) residue. The fabricated CNP-aptasensor exhibited superior selectivity with exceptional photoluminescence properties.

View Article and Find Full Text PDF

In this work, with the drug oxytetracycline (OTC) released, cell cytotoxicity and antimicrobial studies of dual-responsive sodium alginate and -Isopropylacrylamide hydrogels (SA/pNIPAAm) with enclosed OTC were investigated. The molecular OTC release was explored with different acid-base conditions and temperature conditions. In order to characterize cell cytotoxicity and antimicrobial efficacy, time-dependent OTC release analysis of different acid-base conditions was performed in SA/pNIPAAm hydrogels.

View Article and Find Full Text PDF

In this work, we have developed a simple and rapid colorimetric assay for the detection of immunoglobulin E (IgE) using functional nucleic acids (FNAs) and a solid-phase competition enzyme-linked immunosorbent assay (ELISA). The FNAs including aptamer of recombinant IgE, G-quadruplex and its complementary fragments were immobilized on 96-well microplates to achieve recognition and detection of IgE in biological samples. The G-quadruplex DNAzyme catalyzed 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS)-hemin-HO system was used to improve the sensitivity of colorimetric assay.

View Article and Find Full Text PDF

Carbon nanoparticles (CNPs) have been combined with aptamer, providing a broad application in small molecule. CNPs can be quenched by small molecules and are usually applied as luminescent probes because of their photophysical characteristics. In this work, we developed a competitive analysis for antibiotic residues detection based on carbon nanoparticles (CNPs) and oligonucleotide probes.

View Article and Find Full Text PDF

In this work, we report the direct diagnosing chemoresistance of glioma stem cells (GSCs) during chemotherapy on a biomimetric microsystem that reconstitutes glioma perivascular niches on a chip. Glioma stem cells and endothelial cells were specially cocultured onto the biomimetric system to precisely control stem cell coculture for the proof-of-principle studies. The expression levels of 6- O-methylguanine was confirmed by mass spectrometer, and Bmi-1 gene was also investigated to uncover the chemoresistance of GSCs.

View Article and Find Full Text PDF

Interaction between tumor and endothelial cells could affect tumor growth and progression and induce drug resistance during cancer therapy. Investigation of tumor-endothelial cell interaction involves cell coculture, protein detection, and analysis of drug metabolites, which are complicated and time-consuming. In this work, we present an integrated microfluidic device with three individual components (cell coculture component, protein detection component, and pretreatment component for drug metabolites) to probe the interaction between tumor and endothelial cells.

View Article and Find Full Text PDF

The identification of G1-phase arrest requires a dynamic capturing method. In this work, we reported an indicator based on MYC and CDKN1A mRNA imaging to visualize G1-phase cycle arrest. A typical G1-phase arrest imaging is shown as a green-to-red conversion by fluorescence molecular beacons indicating the change as down-regulating of MYC and up-regulating of CDKN1A mRNA.

View Article and Find Full Text PDF

In this paper, we rationally design a novel G-quadruplex-selective luminescent iridium (III) complex for rapid detection of oligonucleotide and VEGF165 in microfluidics. This new probe is applied as a convenient biosensor for label-free quantitative analysis of VEGF165 protein from cell metabolism, as well as for studying the kinetics of the aptamer-protein interaction combination with a microfluidic platform. As a result, we have successfully established a quantitative analysis of VEGF165 from cell metabolism.

View Article and Find Full Text PDF

Bladder cancer (BC) cells spontaneously exfoliated in the urine of patients with BC. Detection of exfoliated tumor cells has clinical significance in cancer therapy because it would enable earlier non-invasive screening, diagnosis, or prognosis of BC. In this research, a method for analyzing genetic abnormalities of BC cells collected from urine samples was developed.

View Article and Find Full Text PDF

Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering.

View Article and Find Full Text PDF

Research towards nucleic acid amplification technologies for detection of human papillomavirus (HPV) 16 E6/E7 mRNA was carried out in combination with microchip electrophoresis (MCE). The approaches of nucleic acid sequence based amplification (NASBA), one-step RT-PCR and two-step RT-PCR were successfully developed. NASBA was a simple enzymatic reaction, which directly amplified HPV16 mRNA by isothermal amplification, leaving out the complex and tedious operation.

View Article and Find Full Text PDF

In this work, we report an integrated microfluidic device for cell co-culture under different concentrations of oxygen, in which the secreted protein VEGF165 was on-line qualitatively and semi-quantitatively analyzed by functional nucleic acid, hemin, ABTS and peroxide system. This microfluidic platform allowed investigation of various oxygen and distances effect on cell-to-cell communication. Besides, the microfluidic device was used for real-time analysis of VEGF165 protein by aptamer-functionalized microchannels.

View Article and Find Full Text PDF

To establish an automatic and online microfluidic chip-mass spectrometry (chip-MS) system, a device was designed and fabricated for microsampling by a hybrid capillary. The movement of the capillary was programmed by a computer to aspirate samples from different microfluidic channels in the form of microdroplets (typically tens of nanoliters in volume), which were separated by air plugs. The droplets were then directly analyzed by MS via paper spray ionization without any pretreatment.

View Article and Find Full Text PDF