Interface engineering for electrocatalysts has proven to be an effective method for modulating electrocatalytic properties, yet a more efficient and straightforward strategy to construct a valid heterointerface for further enhancing interface effects is urgently needed for boosting oxygen evolution reactions (OER) at large current. Herein, a closely compacted heterostructure combining NiCo-metal-organic framework (MOF) and Ce-MOF is in situ formed through a one-step hydrothermal treatment, and partial phosphorization is employed to further enhance the interface effect between the newly formed urchin-shaped NiCoP shells and hexagonal rod-like Ce-MOF cores on nickel foam (NiCoP/Ce-MOF@NF). Experimental and theoretical results indicate that the heterogeneous NiCoP/Ce-MOF@NF, characterized by a more intensive interface rather than a simple physical mixture, generates an OER-beneficial electronic structure, significantly facilitates charge transfer and reaction kinetics, and creates a synergistically stable structure.
View Article and Find Full Text PDFBiomimetics (Basel)
June 2024
In recent years, remotely controlling an unmanned aerial vehicle (UAV) to perform coverage search missions has become increasingly popular due to the advantages of the UAV, such as small size, high maneuverability, and low cost. However, due to the distance limitations of the remote control and endurance of a UAV, a single UAV cannot effectively perform a search mission in various and complex regions. Thus, using a group of UAVs to deal with coverage search missions has become a research hotspot in the last decade.
View Article and Find Full Text PDFPurpose: To conduct a large retrospective study of screening refractive error in young children.
Methods: This retrospective study included children aged from 4 months to 8 years in Daxing District, Beijing, who underwent refractive examinations without cycloplegia. It included a cross-sectional assessment of refractive error screening for all children, and a longitudinal component for a subgroup with data available for two to five visits.
Two-dimensional TiCT MXene materials, with metal-like conductivities and versatile terminals, have been considered to be promising surface modification materials for Zn-metal-based aqueous batteries (ZABs). However, the oxygen-rich and hybridized terminations caused by conventional methods limit their advantages in inhibiting zinc dendrite growth and reducing corrosion-related side reactions. Herein, -O-depleted, -Cl-terminated TiCT was precisely fabricated by the molten salt electrochemical etching of TiAlC, and controlled in situ terminal replacement from -Cl to unitary -S or -Se was achieved.
View Article and Find Full Text PDFPhotoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation.
View Article and Find Full Text PDFThe surface and interface chemistry are critical for controlling the properties of two-dimensional transition metal carbides and nitrides (MXenes). Numerous efforts have been devoted to the functionalization of MXenes with small inorganic ligands; however, few etching methods have been reported on the direct bonding of organic groups to MXene surfaces. In this work, we demonstrated an efficient and rapid strategy for the direct synthesis of 2D TiCT MXene nanosheets with organic terminal groups in an organic Lewis acid (trifluoromethanesulfonic acid) solvent, without introducing additional intercalations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
Single-atom catalysts (SACs) with maximized metal atom utilization and intriguing properties are of utmost importance for energy conversion and catalysis science. However, the lack of a straightforward and scalable synthesis strategy of SACs on diverse support materials remains the bottleneck for their large-scale industrial applications. Herein, we report a general approach to directly transform bulk metals into single atoms through the precise control of the electrodissolution-electrodeposition kinetics in ionic liquids and demonstrate the successful applicability of up to twenty different monometallic SACs and one multimetallic SAC with five distinct elements.
View Article and Find Full Text PDFEntropy (Basel)
September 2022
With the continuous development of Unmanned Aerial Vehicle (UAV) technology, UAVs are widely used in military and civilian fields. Multi-UAV networks are often referred to as flying ad hoc networks (FANET). Dividing multiple UAVs into clusters for management can reduce energy consumption, maximize network lifetime, and enhance network scalability to a certain extent, so UAV clustering is an important direction for UAV network applications.
View Article and Find Full Text PDFComput Intell Neurosci
October 2022
As a nondeterministic polynomial (NP) problem, the flexible job shop scheduling problem (FJSP) is a difficult problem to be solved in terms of finding an acceptable solution. In last decades, genetic algorithm (GA) displays very promising performance in the field. In this article, a hybrid algorithm combining global and local search with reinitialization (GLRe)-based GA is proposed to minimize makespan for FJSP.
View Article and Find Full Text PDFComput Intell Neurosci
July 2022
Interactive genetic algorithm (IGA) is an effective way to help users with product design optimization. However, in this process, users need to evaluate the fitness of all individuals in each generation. It will cause users' fatigue when users cannot find satisfactory products after multi-generation evaluations.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2022
Tuning morphology and doping additional rare earth (RE) cations are potential techniques to promote the photocatalytic performance of ceria (CeO), evaluating the collaborative effects of morphology and RE dopants is significant for producing high active ceria-based catalysts. So in this work, cubic, polyhedral and rod-like nanoceria doped with 10 mol % La (lanthanum), Y (yttrium), or Sm (samarium) were synthesized by a facile template-free hydrothermal method. Phases, morphologies, oxygen vacancies (OVs) concentration, energy band structure, photo-carriers separation/recombination, and photodegradation ratio toward methylene blue (MB) dye of as prepared ceria were studied.
View Article and Find Full Text PDFOxygen vacancies (OVs) have critical effects on the photoelectric characterizations and photocatalytic activity of nanoceria, but the contributions of surface OVs on the promoted photocatalytic properties are not clear yet. In this work, we synthesized ceria nanopolyhedron (P-CeO), ceria nanocube (C-CeO) and ceria nanorod (R-CeO), respectively, and annealed them at 600 °C in air, 30%, 60% or pure H. After annealing, the surface OVs concentration of ceria elevates with the rising of H concentration.
View Article and Find Full Text PDFMorphological tuning or additional cation doping is one of the potential and simple methods to enhance the photocatalytic properties of ceria, in which rare-earth element doped ceria nanorods (CeO-RE NRs) are expected to be a promising photocatalyst with high activity. But the optimal doping conditions, including the variety and concentration of RE elements are ambiguous, and the contribution of doped RE ions to the enhancement of photocatalytic activity needs to be further studied. In this work, we doped La, Y and Sm with a wide range of 0%-30% into CeO NRs, and investigated the phase, morphology, band gap, oxygen vacancy concentration, PL spectra and photocatalytic activity variation under different doping conditions.
View Article and Find Full Text PDFThere are two common challenges in particle swarm optimization (PSO) research, that is, selecting proper exemplars and designing an efficient learning model for a particle. In this article, we propose a triple archives PSO (TAPSO), in which particles in three archives are used to deal with the above two challenges. First, particles who have better fitness (i.
View Article and Find Full Text PDFThe backtracking search optimization algorithm (BSA) is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm.
View Article and Find Full Text PDFFor solving non-linear programming problems containing discrete and continuous variables, this article suggests two modified algorithms based on differential evolution (DE). The two proposed algorithms incorporate a novel random search strategy into DE/best/1 and DE/cur-to-best/1 respectively. Inspired by the artificial bee colony algorithm, the random search strategy overcomes the searching unbalance of DE/best/1 and DE/cur-to-best/1 by enhancing the global exploration capability of promising individuals.
View Article and Find Full Text PDFComput Intell Neurosci
February 2017
In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model.
View Article and Find Full Text PDF