Publications by authors named "Xuetuan Wei"

Spermidine has broad application potential in food, medicine and other fields. In this study, a novel Bacillus amyloliquefaciens cell factory was constructed for production of spermidine from renewablebiomass resources. Firstly, the speB gene was found to be optimal for synthesis of spermidine, and the function of SpeB was explained by amino acid sequence analysis and molecular docking.

View Article and Find Full Text PDF

In this study, two high-performing α-amylase-producing strains, CK3-5 and A8-1 were successfully isolated and characterized, which were taxonomically confirmed as Bacillus velezensis through whole-genome sequencing and bioinformatics. Bioinformatic sequence analysis and molecular docking revealed the catalytic triad (Asp173-Glu208-Asp274) essential for α-amylase function. Through metabolic engineering, the recombinant strain BAX-5/PT17amy(A8-1)SP was developed, which exhibited the highest α-amylase activity of 1440 U/mL upon fermentation optimization, marking a 9.

View Article and Find Full Text PDF

Objectives: To enhance the de novo synthesis of SAM, the effects of several key genes on SAM synthesis were examined based on modular strategy, and the key genes were manipulated to obtain an engineered strain with high SAM production.

Results: In Bacillus amyloliquefaciens HSAM6, the deletion of argG gene to block aspartic acid branching degradation increased SAM titer to 254.78 ± 15.

View Article and Find Full Text PDF

A novel encapsulation system was designed, utilizing sodium alginate (SA) polysaccharide as the matrix and easily absorbed Fe as the metal-organic framework, to construct microbead scaffolds with both high catechins (CA) and vitamin C (Vc) loading and antioxidant properties. The structure of microbead hydrocolloids was investigated using SEM, XPS, FTIR, XRD and thermogravimetry, and the antioxidant activity, in vitro digestion and the release of CA and Vc were evaluated. These results revealed that the microbead hydrocolloids SA-CA-Fe and SA-CA-Vc-Fe exhibited denser and stronger cross-linking structures, and the formation of inter- and intramolecular hydrogen and coordination bonds improved thermal stability.

View Article and Find Full Text PDF

Heme is a crucial component in endowing plant-based meat analogs with flavor and color. This study aimed to develop a green strategy for heme production by reducing fermentation off-odor and accelerating heme synthesis. First, an efficient CRISPR/Cas9n system was constructed in to construct the odor-reducing chassis cell HZC9nΔGPSU, and the odor substances including the branched-chain short fatty acids, putrescine, and ammonia were reduced by 62, 70, and 88%, respectively.

View Article and Find Full Text PDF

In this study, a novel strain for degrading chitin was identified as HL37, and the key chitinase CH1 was firstly mined through recombinant expression in HZ12. Subsequently, the sequence composition and catalytic mechanism of CH1 protein were analyzed. The molecular docking indicated that the triplet of Asp526, Asp528, and Glu530 was a catalytic active center.

View Article and Find Full Text PDF

Due to the broad application and substantial market demand for proteases, it was vital to explore the novel and efficient protease resources. The aim of this study was to identify the novel protease for tobacco protein degradation and optimize the expression levels. Firstly, the tobacco protein was used as the sole nitrogen resource for isolation of protease-producing strains, and a strain with high protease production ability was obtained, identified as WH-7.

View Article and Find Full Text PDF

Nitrosamines are considered carcinogens that threaten human health and environment. Especially, high contents of Tobacco-specific nitrosamines (TSNAs) are generated during the fermentation process of cigar tobacco. To control the accumulation of TSNAs, one novel strain WD-32 was isolated by comprehensively evaluating the reduction characteristics of nitrate, nitrite, and TSNAs, and this strain was identified as Bacillus siamensis by 16 S rRNA gene analysis and MALDI-TOF MS evaluation.

View Article and Find Full Text PDF

Annulohypoxylon stygium melanin (AsM) has various functional properties such as antioxidant and anti-radiation, but its biological activity in vivo has not been fully investigated. In this study, we researched the effects of AsM on the protection against acute liver injury in mice and its mechanism. The results showed that AsM had no significant effect on body weight in mice but reduced the liver index.

View Article and Find Full Text PDF

Aims: Bacillus licheniformis AQ is an industrial strain with high production of alkaline protease (AprE), which has great industrial application value. However, how to regulate the production of AprE in the process of industrial fermentation is still not completely clear. Therefore, it is important to understand the metabolic process of AprE production in the industrial fermentation medium.

View Article and Find Full Text PDF

Phellinus linteus polysaccharides exhibit antitumor, immunomodulatory, anti-inflammatory, and antioxidant properties, mitigate insulin resistance, and enhance the diversity and abundance of gut microbiota. However, the bioactivities of P. linteus polysaccharides vary owing to the complex structure, thereby, limiting their application.

View Article and Find Full Text PDF

To produce food-grade ice nucleators, a 3.77 kb ice nucleation gene () isolated from () was introduced into the Gram-positive microorganism for the first time. The differential scanning calorimetry (DSC) results indicated that recombined strain B9-INP was an effective ice nucleator for controlling the supercooling point of distilled water at low concentrations.

View Article and Find Full Text PDF

L-tyrosine is a key precursor for synthesis of various functional substances, but the microbial production of L-tyrosine faces huge challenges. The development of new microbial chassis cell and gene resource is especially important for the biosynthesis of L-tyrosine. In this study, the optimal host strain HZ-12 was firstly selected by detecting the production capacity of L-tyrosine.

View Article and Find Full Text PDF

Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization.

View Article and Find Full Text PDF

Hemin has potential application value in plant-based meat analogues. However, mechanisms of interaction between hemin and plant protein are unclear. In this study, soy protein isolate (SPI) was applied to examine these interactions using multi-spectroscopic and molecular docking techniques.

View Article and Find Full Text PDF

In order to explore the relationship between sclerotial formation and antioxidant enzymes under abiotic stresses, the effects of abiotic stresses including temperature, pH value, osmotic pressure, limited nitrogen, and hydrogen peroxide (HO) on the activities of antioxidant enzymes, ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in Pleurotus tuber-regium were studied. Meanwhile, the sclerotial formation under these abiotic stress conditions was also investigated. It was found that low temperature, weak alkaline, appropriate osmotic stress, and HO can promote sclerotial formation, and sclerotial formation always tended to occur when the activities of antioxidant enzymes were at a high value.

View Article and Find Full Text PDF

Gene expression is needed to be conducted in an orthogonal manner and controllable independently from the host's native regulatory system. However, there is a shortage of gene expression regulatory toolboxes that function orthogonally from each other and toward the host. Herein, we developed a strategy based on the mutant library to generate orthogonal gene expression toolboxes.

View Article and Find Full Text PDF

Monascus azaphilones (MAs) have been extensively applied as natural food coloring agents. MAs are classified into three categories: yellow MAs (YMAs), orange MAs (OMAs), and red MAs with various biological activities. However, the exact biosynthetic mechanism of OMAs and YMAs are not thoroughly elucidated.

View Article and Find Full Text PDF

Melanin is a secondary metabolite composed of complex heterogeneous polymers. Fungal melanin is considered to be a sustainable and biodegradable natural pigment and has a variety of functional properties and biological activities. On one hand, due to its own specific properties it can play the role of antioxidant, anti-radiation, adsorption, and photoprotection.

View Article and Find Full Text PDF

Alkaline protease has been widely applied in food, medicine, environmental protection and other industrial fields. However, the current activity and yield of alkaline protease cannot meet the demand. Therefore, it is important to identify new alkaline proteases with high activity.

View Article and Find Full Text PDF

Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted.

View Article and Find Full Text PDF

Fungal azaphilones have attracted considerable interest as they exhibit great potential in food and pharmacological industries. However, there is a severe bottleneck in the low production in wild strains and the ability to genetically engineer azaphilone-producing fungi. Using azaphilones (MAs) as an example, we demonstrate a systematic metabolic engineering strategy for improving the production of MAs.

View Article and Find Full Text PDF

Spermidine is a biologically active polyamine with extensive application potential in functional foods. However, previously reported spermidine titers by biosynthesis methods are relatively low, which hinders its industrial application. To improve the spermidine titer, key genes affecting the spermidine production were mined to modify .

View Article and Find Full Text PDF
Article Synopsis
  • - The text reviews a microbe from a specific genus and family that is widely found in various environments, including food, plants, and soil, and discusses its applications in probiotic and prebiotic fermentation processes.
  • - This microbe has the potential to synthesize bioactive compounds like peptides and exopolysaccharides, as well as antimicrobial substances, which enhances its value in the food sector.
  • - Additionally, it is capable of hydrolyzing complex compounds such as proteins and carbohydrates, making it a versatile and promising candidate for use in functional food processing and improving the quality of food products.
View Article and Find Full Text PDF