Publications by authors named "Xueting Zhong"

Chrysanthemum () is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes.

View Article and Find Full Text PDF

Background: Tomato yellow leaf curl virus (TYLCV) is a major monopartite virus in the family Geminiviridae and has caused severe yield losses in tomato and tobacco planting areas worldwide. Wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) are a subfamily of the receptor-like kinase family implicated in cell wall signaling and transmitting extracellular signals to the cytoplasm, thereby regulating plant growth and development and resistance to abiotic and biotic stresses. Recently, many studies on WAK/WAKL family genes have been performed in various plants under different stresses; however, identification and functional survey of the WAK/WAKL gene family of Nicotiana benthamiana have not yet been performed, even though its genome has been sequenced for several years.

View Article and Find Full Text PDF

One of the significant limitations of aquaculture worldwide is the prevalence of divalent copper (Cu). Crayfish (Procambarus clarkii) are economically important freshwater species adapted to a variety of environmental stimuli, including heavy metal stresses; however, large-scale transcriptomic data of the hepatopancreas of crayfish in response to Cu stress are still scarce. Here, integrated comparative transcriptome and weighted gene co-expression network analyses were initially applied to investigate gene expression profiles of the hepatopancreas of crayfish subjected to Cu stress for different periods.

View Article and Find Full Text PDF

In recent years, driven by the support of national policies and societal needs for employments, talents in biology majors have been growing rapidly. To foster high-calibre biology talents for the society in the context of the "double world-class initiative" in higher education, this study analyzed the opinion of biology undergraduates in Huzhou University on employment and their professional recognition of biology majors. The aim of this study was to propose a high-quality employments-driven talent training mode for undergraduates in biology majors, so as to serve as a reference for the reform in training modes of other relevant majors.

View Article and Find Full Text PDF

Background: Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant.

Methods: Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level.

View Article and Find Full Text PDF

Cherry (Prunus avium) has become an important economical fruit in China. In October 2020, a leaf spot disease was found on cherry in the orchard of Taizhou Academy of Agriculture Sciences, Zhejiang, China. The symptoms appeared as small, water-soaked spots on the leaves, which later became larger, dark brown, and necrotic lesions of 1 cm to 3 cm in width, 4 cm to 8 cm in length.

View Article and Find Full Text PDF

Virus-like symptoms, including leaf deformation and curling, were observed on nightshade () in Zhejiang Province, China. To identify possible pathogenic viruses or viroids, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to identification of a novel geminivirus, provisionally designated nightshade curly top virus (NCTV).

View Article and Find Full Text PDF

Background: High-temperature stress (HTS) is one of the main environmental stresses that limit plant growth and crop production in agricultural systems. Maca (Lepidium meyenii) is an important high-altitude herbaceous plant adapted to a wide range of environmental stimuli such as cold, strong wind and UV-B exposure. However, it is an extremely HTS-sensitive plant species.

View Article and Find Full Text PDF

Phosphorylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in However, how phosphorylation of TYLCCNB-βC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-βC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-βC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in plants.

View Article and Find Full Text PDF

Unlabelled: Geminiviruses have caused serious losses in crop production. To investigate the mechanisms underlying host defenses against geminiviruses, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic approach was used to explore the expression profiles of proteins in Nicotiana benthamiana (N. benthamiana) leaves in response to tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB) at an early phase.

View Article and Find Full Text PDF

Detection of somatic mutations for targeted therapy is increasingly used in clinical settings. However, due to the difficulties of detecting rare mutations in excess of wild-type DNA, current methods often lack high sensitivity, require multiple procedural steps, or fail to be quantitative. We developed real-time bidirectional pyrophosphorolysis-activated polymerization (real-time Bi-PAP) that allows quantitative detection of somatic mutations.

View Article and Find Full Text PDF