Publications by authors named "Xueting Min"

Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring.

View Article and Find Full Text PDF

Shifts in plant phenology influence ecosystem structures and functions, yet how multiple global change drivers interact to affect phenology remains elusive. We conducted a meta-analysis of 242 published articles to assess interactions between warming (W) and other global change drivers including nitrogen addition (N), increased precipitation (IP), decreased precipitation (DP) and elevated CO (eCO ) on multiple phenophases in experimental studies. We show that leaf out and first flowering were most strongly affected by warming, while warming and decreased precipitation were the most pronounced drivers for leaf colouring.

View Article and Find Full Text PDF