Publications by authors named "Xuetang Xu"

Developing efficient non-noble metal dual-functional electrocatalysts for overall water splitting is essential for the production of green hydrogen. Given the significant advantages of self-supporting electrodes, regulating the growth of self-supporting nanoarrays on a conductive substrate is conducive to improving the electrocatalytic activity. In this work, aligned cobalt phosphide (CoP) nanowire arrays grown on borate-modified Ni foam substrate (CoP/R-NF) were utilized as a bifunctional electrocatalyst for both hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) in alkaline solution.

View Article and Find Full Text PDF

Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAl LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl LDH electrode exhibits capacities of 5.

View Article and Find Full Text PDF

Anion exchange is recognized as an effective method to regulate the composition, electronic conductivity, and electrochemical behavior of the transition metal-based compounds. In this work, anion exchange is adopted as a rational post-treatment route to facilitate the capacitive activity of CoNi S nanoparticle arrays grown on carbon cloth (CC) with high mass-loading. As soaked in saturated Na S solution, the CoNi S /CC electrode showed an increased capacity from 483 C g to 841 C g at 10 mA cm with excellent rate performance and stable cycling performance, which was superior to the CoNi S /CC electrode activated by NaBH reduction.

View Article and Find Full Text PDF

Designing advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH) layer induced effective coprecipitation between Ni and Fe for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity.

View Article and Find Full Text PDF

A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO and OH results in the construction of a reservoir for OH anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.

View Article and Find Full Text PDF

Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution.

View Article and Find Full Text PDF

A new type of cellulose derivative, cellulose dehydroabietate (CDA), was synthesized by the O-acylation reaction of cellulose with dehydroabietic acid chloride (DHAC) using ionic liquid 1-butyl-3-methylimidazolium bromide ([bmim]Br) as a solvent and 4-dimethyl-aminopyridine (DMAP) as a catalyst. The resulting CDA was characterized by means of FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and elemental analysis. Also, some properties of CDA were determined.

View Article and Find Full Text PDF