Publications by authors named "Xuetan Sun"

Nature-inspired nanoparticles, from pathogens to mammalian cells, have attracted increasing attention, for their specific functions and unparalled features that are often desired in designing drug/gene delivery nonviral vectors. However, the applications of nonviral vectors are still suffering from the limits of low drug loading efficiency and/or low gene transfection efficiency. Herein, a novel carrier-free nanodrug-based virus-surface-mimicking gene delivery nanosystem is designed by condensing doxorubicin nanoparticles (DNPs) onto the surface of the PEI/DNA nanocomplex through electrostatic force, which would prolong the blood circulation time of PEI/DNA and confer high drug loading characteristics to the PEI/DNA nanosystem.

View Article and Find Full Text PDF

Carrier-free nanoparticles with high drug loading have attracted increasing attention; however, in situ on-demand drug release remains a challenge. Here, a novel near-infrared (NIR) laser-induced blasting carrier-free nanodrug delivery system is designed and fabricated by coating doxorubicin (DOX) nanoparticles (DNPs) with a polydopamine film (PDA) that would prolong the blood circulation time of DNPs and avoid the preleakage of the DOX during blood circulation. Meanwhile, the NHHCO is introduced to trigger in situ "bomb-like" release of DOX for the production of carbon dioxide (CO) and ammonia (NH) gases driven by NIR irradiated photothermal effect of PDA.

View Article and Find Full Text PDF

Cell membrane-camouflaged nanoparticles for cancer therapy have received a burgeoning interest over the past years. However, the low drug loading and intratumoral release efficiency, and lack of precise targeting remains a big challenge; in addition, foreign carriers used may pose an expected burden in the course of metabolism. In this study, we designed and fabricated a novel NIR-responsive highly targeted carrier-free nanosystem by coating the exactly identical source of cracked cancer cell membranes (CCCMs) specifically derived from the homologous tumors onto the surface of the co-assembly nanoparticles of doxorubicin (DOX) and FDA-approved photothermal agent, indocyanine green (ICG).

View Article and Find Full Text PDF