The transforming growth factor β (TGF-β) signaling pathway exerts a dual role in oncogenesis, acting as a suppressor in healthy and early stage neoplastic tissues while promoting malignancy and metastasis in advanced cancers. Tumor hemorrhage further exacerbates TGF-β-mediated metastasis by up-regulating its expression. Here, a coagulation-targeting peptide (A15)-decorated TGF-β inhibitor nanomedicine (A15-LY-NPs) was developed.
View Article and Find Full Text PDFTumor recurrence and metastasis after surgery are important factors affecting patient survival. The immunosuppressed tumor microenvironment after surgery reduces the ability of the immune system to clear residual tumor cells, thus increasing the risk of recurrence and metastasis. Currently, immunotherapy-based adjuvant therapy can effectively inhibit tumor recurrence and metastasis after surgery, but simultaneous and efficient synergistic activation of adaptive and innate immunity is a challenge.
View Article and Find Full Text PDFPoly(lactic acid) (PLA) is a representative biobased and biodegradable aliphatic polyester and a front-runner among sustainable materials. As a semicrystalline thermoplastic, PLA exhibits excellent mechanical and physical properties, attracting considerable attention in commodity and medical fields. Stereochemistry is a key factor affecting PLA's properties, and to this end, the engineering of PLA's microstructure for tailored material properties has been an active area of research over the decade.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
The lower melt strength of poly(lactide) (PLA) limits its broader applications. Here, a strategy combining copolymerization with multi-arm branching was propose to enhance the melt strength of PLA. Initially, stereoisomeric cyclic ester monomers (CEM) synthesized via zeolite catalysis were copolymerized into PLA chains.
View Article and Find Full Text PDFMild photothermal therapy (M-PTT) can induce immunogenic cell death (ICD) to reverse the immune tolerance caused by low-dose chemotherapy. However, it still needs convenient strategies to control temperature during M-PTT. In this work, the phase change material lauric acid (LA, melting point 43 °C) was introduced to construct nanoparticles loaded with deferoxamine mesylate (DFO) and cisplatin (CDDP), which were mixed into a supramolecular hydrogel formed by polyvinylpyrrolidone (PVP)/tannic acid (TA)/Fe to obtain FeTP@DLD/DLC.
View Article and Find Full Text PDFHerein, we constructed a paclitaxel (PTX) prodrug (PA) by conjugating PTX with acrylic acid as a cysteine-depleting agent. The as-synthesized PA can assemble with diacylphosphatidylethanolamine-PEG to form stable nanoparticles (PA NPs). After endocytosis into cells, PA NPs can specifically react with cysteine and trigger release of PTX for chemotherapy.
View Article and Find Full Text PDFIn recent years, soft robotics has emerged as a rapidly expanding frontier research field that draws inspiration from the locomotion mechanisms of soft-bodied creatures in nature to achieve smooth and complex motion for diverse applications. However, the fabrication of soft robots with hybrid structures remains challenging due to limitations in material selection and the complex, multi-step processes involved in traditional manufacturing methods. Herein, a novel direct one-step additive manufacturing (3D printing) approach is introduced for the fabrication of hybrid robots composed of soft and rigid components for sophisticated tasks.
View Article and Find Full Text PDFUtilizing enzyme cascades as a promising approach for targeted cancer therapies holds significant potential, yet its clinical effectiveness is substantially hindered by functional losses during delivery. Complex coacervation emerges as an intriguing strategy for designing functional nanoreactors. In this study, a noteworthy achievement is presented in the development of lactobionic acid-modified tumor microenvironment (TME)-responsive polyelectrolyte complex vesicles (HGS-PCVs) based on bioinspired homopolypeptoids, which serve as a facile, intelligent, and highly efficient nanoreactor tunable for glucose oxidase, hemoglobin, and sorafenib (SRF) to hepatic cancer cells.
View Article and Find Full Text PDFHere we report a brand-new bioactive polymer featuring sulfonium moieties that exhibits the capability of inducing immunogenic cell death (ICD) for anticancer therapy. The optimized polysulfonium presents a wide spectrum of potent anticancer activity and remarkable selectivity. In-depth mechanistic studies reveal that the polymer exerts its cytotoxic effects on cancer cells through a membrane-disrupting mechanism.
View Article and Find Full Text PDFLocal immunotherapy represents a promising solution for preventing tumor recurrence and metastasis post tumor surgical resection by eliminating residue tumor cells as well as eliciting tumor-specific immune responses. Minimally invasive surgery has become a mainstream surgical method worldwide due to its advantages of aesthetics and rapid postoperative recovery. Unfortunately, the currently reported local immunotherapy strategies are mostly designed to be used after open laparotomy, which go against the current surgical philosophy of minimally invasive therapy and is not suitable for clinical translation.
View Article and Find Full Text PDFPersonalized cancer vaccines targeting specific neoantigens have been envisioned as one of the most promising approaches in cancer immunotherapy. However, the physicochemical variability of the identified neoantigens limits their efficacy as well as vaccine manufacturing in a uniform format. Herein, we developed a uniform nanovaccine platform based on poly(2-oxazoline)s (POx) to chemically conjugate neoantigen peptides, regardless of their physicochemical properties.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
August 2024
The interplay between the tumor cells and their microenvironments is as inseparable as the relationship between "seeds" and "soil." The tumor microenvironments (TMEs) exacerbate malignancy by enriching malignant cell subclones, generating extracellular matrices, and recruiting immunosuppressive cells, thereby diminishing the efficacy of clinical therapies. Modulating TMEs has emerged as a promising strategy to enhance cancer therapy.
View Article and Find Full Text PDFPoly(lactic acid) (PLA) and poly(glycolic acid) (PGA) are extensively studied biodegradable polymers. However, the degradation behavior of their copolymer, poly(lactic-co-glycolic acid) (PLGA), in marine environments has not yet been confirmed. In this study, the changes in macroscopic and microscopic morphology, thermal properties, aggregation, and chemical structure of PLA, PGA, PLGA-85, and PLGA-75 (with 85% and 75% LA content) in simulated marine environments were investigated.
View Article and Find Full Text PDFDural defects and subsequent complications, including cerebrospinal fluid (CSF) leakage, are common in both spine surgery and neurosurgery, and existing clinical treatments are still unsatisfactory. In this study, a tissue-adhesive and low-swelling hydrogel sealant comprising gelatin and -phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) is developed via the OPA/amine condensation reaction. The hydrogel shows an adhesive strength of 79.
View Article and Find Full Text PDFUnderstanding how life's essential homochiral biopolymers arose from racemic precursors is a challenging quest. Herein, we present a groundbreaking approach involving hierarchical chiral assembly-driven stereoselective ring-opening polymerization of ε-benzyloxycarbonyl-l/d-lysine -carboxyanhydrides assisted by ultrasonication in an aqueous medium. This method enabled a narrow dispersity within a few minutes and the achievement of high molecular weight for polypeptides, employing a living polymerization mechanism.
View Article and Find Full Text PDFVaccine is the most important way for fighting against infection diseases. However, multiple injections and unsatisfied immune responses are the main obstacles for current vaccine application. Herein, a dynamic covalent hydrogel (DCH) is used as a single-dose vaccine adjuvant for eliciting robust and sustained humoral immunity.
View Article and Find Full Text PDFIn this study, we developed a ROS-responsive thermosensitive poly(ethylene glycol)-polypeptide hydrogel loaded with a chemotherapeutic drug, doxorubicin (Dox), an antiviral imidazoquinoline, resiquimod (R848), and antibody targeting programmed cell death protein 1 (aPD-1) for local chemoimmunotherapy. The hydrogel demonstrated controllable degradation and sustained drug release behavior according to the concentration of ROS . Following intratumoral injection into mice bearing B16F10 melanoma, the Dox/R848/aPD-1 co-loaded hydrogel effectively inhibited tumor growth, prolonged animal survival time and promoted anti-tumor immune responses with low systemic toxicity.
View Article and Find Full Text PDFHost defense peptide-mimicking cationic oncolytic polymers have attracted increasing attention for cancer treatment in recent years. However, polymers with large amounts of positive charge may cause rapid clearance and severe off-target toxicity. To facilitate in vivo application, an alkaline phosphatase (ALP)-responsive oncolytic polypeptide precursor (C-PLL/PA) has been reported in this work.
View Article and Find Full Text PDF