Publications by authors named "Xueshi Chen"

Psychiatric disorders and heart abnormality are closely interconnected. Previous knowledge has been well-established that psychiatric disorders can lead to increased cardiovascular morbidity and even sudden cardiac death. Conversely, whether heart abnormality contributes to psychiatric disorders remains rarely studied.

View Article and Find Full Text PDF
Article Synopsis
  • Nearly half of individuals with mild traumatic brain injury (mTBI) continue to face neurological issues, potentially linked to stress exposure.
  • A study using a mouse model found that acute and chronic stress worsened recovery from mTBI by increasing cell death mechanisms like ferroptosis, which is driven by iron overload in the brain.
  • The use of iron chelators showed promise in reversing some of the detrimental effects of stress on neuronal health and may be a potential treatment strategy for mTBI patients affected by stress.
View Article and Find Full Text PDF

The objective of this study is to elucidate how Royal jelly (RJ) and 10-hydroxy-2-decanoic acid (10-HDA) prevents diabetic skin dysfunction by modulating the pyroptosis pathway. Type 2 diabetes models are induced by fat diet consumption and low dose of streptozotocin (STZ) in C57BL/6J mice and treated with RJ (100 mg kg day) and 10-HDA, the major lipid component of royal jelly (100 mg kg day) for 28 weeks. The results show that serum concentrations of glucose and triglyceride are significantly lower in the RJ group or 10-HDA than diabetes mellitus (DM) group.

View Article and Find Full Text PDF

Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications.

View Article and Find Full Text PDF

Brain homeostasis refers to the normal working state of the brain in a certain period, which is important for overall health and normal life activities. Currently, there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance. Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the main causes of death and disability in the world. Owing to the heterogeneity and complexity of TBI pathogenesis, there is still no specific drug. Our previous studies have proved the neuroprotective effect of Ruxolitinib (Ruxo) on TBI, but further are needed to explore the potent mechanisms and potential translational application.

View Article and Find Full Text PDF

Rab7 belongs to the Ras small GTPase superfamily, and abnormal expression of Rab7 can cause neuropathy and lipid metabolism diseases. Studies have shown that Rab7 plays a crucial role in the inner membrane translocase. However, the role of Rab7 in the regulatory mechanisms of cell survival in spinal cord injury remains unknown.

View Article and Find Full Text PDF

In the human body, copper is an important trace element and is a cofactor for several important enzymes involved in energy production, iron metabolism, neuropeptide activation, connective tissue synthesis, and neurotransmitter synthesis. Copper is also necessary for cellular processes, such as the regulation of intracellular signal transduction, catecholamine balance, myelination of neurons, and efficient synaptic transmission in the central nervous system. Copper is naturally present in some foods and is available as a dietary supplement.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) remains the major cause of disability and mortality worldwide due to the persistent neuroinflammation and neuronal death induced by TBI. Among them, pyroptosis, a specific type of programmed cell death (PCD) triggered by inflammatory signals, plays a significant part in the pathological process after TBI. Inhibition of neuroinflammation and pyroptosis is considered a possible strategy for the treatment of TBI.

View Article and Find Full Text PDF

Based on accumulating evidence, cholesterol metabolism dysfunction has been suggested to contribute to the pathophysiological process of traumatic brain injury (TBI) and lead to neurological deficits. As a key transporter of cholesterol that efflux from cells, the ATP-binding cassette (ABC) transporter family exerts many beneficial effects on central nervous system (CNS) diseases. However, there is no study regarding the effects and mechanisms of ABCG1 on TBI.

View Article and Find Full Text PDF

Hydrogen sulfide (HS), an important endogenous signaling molecule, plays an important neuroprotective role in the central nervous system. However, there is no ideal delivery material or method involving the sustained and controlled release of HS for clinical application in brain diseases. Silk fibroin (SF)-based hydrogels have become a potentially promising strategy for local, controlled, sustained drug release in the treatment of various disorders.

View Article and Find Full Text PDF

Silk fibroin, a natural macromolecular protein without physiological activity, has been widely used in different fields, such as the regeneration of bones, cartilage, nerves, and other tissues. Due to irrevocable neuronal injury, the treatment and prognosis of neurological diseases need to be investigated. Despite attempts to propel neuroprotective therapeutic approaches, numerous attempts to translate effective therapies for brain disease have been largely unsuccessful.

View Article and Find Full Text PDF

As one form of stroke, intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease, which has high morbidity and mortality and lacks effective medical treatment. Increased infiltration of inflammatory cytokines coupled with pyroptotic cell death is involved in the pathophysiological process of ICH. However, little is known about whether concomitant fracture patients have the same progression of inflammation and pyroptosis.

View Article and Find Full Text PDF

In forensic traumatic pathology practice, immunohistochemistry and special staining technique play an important role in wound age estimation and complications of traumatic complication identification. They even play an important role in the identification of special cases, such as snakebites and insulin killings. This article reviews the application and value of immunohistochemistry and special staining techniques in forensic traumatic pathology based on the cases of forensic practice reported in literature.

View Article and Find Full Text PDF

Based on accumulating evidence, patients recovering from mild and moderate traumatic brain injury (TBI) often experience increased sensitivity to stressful events. However, few studies have assessed on the effects and pathophysiological mechanisms of stress on TBI. In the current study, using a mouse model of moderate TBI, we investigated whether restraint stress (RS) regulates secondary neurodegeneration and neuronal cell death, which are commonly associated with neurological dysfunctions.

View Article and Find Full Text PDF

This article reports a case of death caused by purulent meningitis after a long-term transorbital intracranial penetrating injury induced by a bamboo chopstick. A 53-year-old man was pierced with a bamboo chopstick into the left orbit, and the bamboo chopstick broke off. The man remained conscious after the injury but developed paroxysmal headaches.

View Article and Find Full Text PDF

Autophagy is a self-phagocytic and highly evolutionarily conserved intracellular lysosomal catabolic system, which plays a vital role in a variety of trauma models, including skin wound healing (SWH). However, the roles and potential mechanisms of autophagy in SWH are still controversial. We firstly investigated the role of autophagy in SWH-induced wound closure rate, inflammatory response, and histopathology, utilizing an inhibitor of autophagy 3-methyladenine (3-MA) and its agonist rapamycin (RAP).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Various forms of cells death are involved in the pathological process of TBI, without exception to ferroptosis, which is mainly triggered by iron-dependent lipid peroxidation. Although there have been studies on ferroptosis and TBI, the effect of ruxolitinib (Ruxo), one type of FDA approved drugs for treating myelofibrosis, on the process of ferroptosis post-TBI is remained non-elucidated.

View Article and Find Full Text PDF

Growing evidences have shown that patients recovering from stroke experience high and unremitting stress. Chronic restraint stress (CRS) has been found to exacerbate neurological impairments in an experimental focal cortical ischemia model. However, there have been no studies reporting the effect and mechanism of CRS on intracerebral hemorrhage (ICH).

View Article and Find Full Text PDF