Publications by authors named "Xuesheng Pan"

Alcohol-associated liver disease (ALD) is a hepatocyte dysfunction disease caused by chronic or excessive alcohol consumption, which can lead to extensive hepatocyte necrosis and even liver failure. Currently, the pathogenesis of ALD and the anti-ALD mechanisms have not been fully elucidated yet. In this study, we investigated the effects of endoplasmic reticulum autophagy (ER-phagy) in ALD and the role of acid-sensing ion channel 1a (ASIC1a) in ER stress-mediated ER-phagy.

View Article and Find Full Text PDF
Article Synopsis
  • Liver fibrosis is a process involving liver tissue damage and repair, primarily driven by the activation of hepatic stellate cells, making understanding their mechanisms crucial for treatment.
  • In experimental studies, overexpressing ASIC1a in liver cells and using Sorafenib revealed that the induction of ferroptosis can effectively inhibit liver fibrosis progression.
  • The findings show that overexpression of ASIC1a reduces ferroptosis and alters the activity of the Hippo/YAP signaling pathway, indicating a complex relationship between calcium influx and liver cell activation.
View Article and Find Full Text PDF

Chronic alcohol consumption is a major risk factor for alcoholic steatohepatitis (ASH). Previous studies have shown that direct injury of hepatocytes is the key factor in its occurrence and development. However, our study shows that the role of Kupffer cells in ASH cannot be ignored.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is the local inflammatory response of the lungs involved in a variety of inflammatory cells. Macrophages are immune cells and inflammatory cells widely distributed in the body. Acid-sensitive ion channel 1a (ASIC1a) is involved in the occurrence of ALI, but the mechanism is still unclear.

View Article and Find Full Text PDF

Aims: Acute lung injury (ALI) is triggered by an acute inflammatory response. Lipopolysaccharide (LPS) is recognized as an important participant in the pathogenesis of sepsis, which may induce ALI. N-phenethyl-5-phenylpicolinamide (N5P) is a newly synthesized HIF-1α inhibitor.

View Article and Find Full Text PDF

Acid-sensitive ion channels (ASICs) are cationic channels activated by extracellular protons and widely distributed in the nervous system of mammals. It belongs to the ENaC/DEG family and has four coding genes: ASIC1, ASIC2, ASIC3, and ASIC4, which encode eight subunit proteins: ASIC1a, ASIC1b, ASIC1b2, ASIC2a, ASIC2b, ASIC3, ASIC4, and ASIC5. Different subtypes of ASICs have different distributions in the central nervous system, and they play an important role in various physiological and pathological processes of the central nervous system, including synaptic plasticity, anxiety disorders, fear conditioning, depressionrelated behavior, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, malignant Glioma, pain, and others.

View Article and Find Full Text PDF

We explored the effect of tetracyclic triterpenoid inonotsuoxide B (IB) extracts of Inonotus obliquus on M1 to M2 macrophage polarization and its possible underlying mechanism. Lipopolysaccharide (LPS)-activated M1 macrophages exert pro-inflammatory effects and release inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. The model and various groups were treated with different IB concentrations (2.

View Article and Find Full Text PDF

Diabetes-related brain complications are the most serious complications of terminal diabetes. The increasing evidence have showed that the predisposing factor is not only hyperglycemia, but also insulin deficiency. In this study, we demonstrated that insulin deficiency was involved in the apoptosis of nerve cells, and it was related to the interaction between acid-sensitive ion channel 1a (ASIC1a) and endoplasmic reticulum stress (ERS).

View Article and Find Full Text PDF

As a reversible scar repair reaction, liver fibrosis can be blocked or even reversed by proper intervention during its formation. Our work suggests that acid-sensitive ion channel 1a (ASIC1a) participates in liver fibrosis and presents a novel mechanism involving m A modification and miR-350/SPRY2. We demonstrated that the expression of ASIC1a was significantly increased in liver tissue of patients with liver fibrosis and animal models of liver fibrosis, as well as PDGF-BB-induced activated HSC-T6.

View Article and Find Full Text PDF

Acid-sensing ion channel 1a (ASIC1a) allows Na and Ca flow into cells. It is expressed during inflammation, in tumour and ischaemic tissue, in the central nervous system and non-neuronal injury environments. Endoplasmic reticulum stress (ERS) is caused by the accumulation of misfolded proteins that interferes with intracellular calcium homoeostasis.

View Article and Find Full Text PDF