Publications by authors named "Xuerong Wei"

Background: Diabetic wounds are one of the long-term complications of diabetes, with a disordered microenvironment, diabetic wounds can easily develop into chronic non-healing wounds, which can impose a significant burden on healthcare. In diabetic condition, senescent cells accumulate in the wound area and suppress the wound healing process. AMPK, as a molecule related to metabolism, has a close relationship with aging and diabetes.

View Article and Find Full Text PDF

The prevalence of chronic wounds (CW) continues to grow. A thorough knowledge of the mechanism of CW formation remains elusive due to a lack of relevant studies. Furthermore, most previous studies concentrated on diabetic ulcers with relatively few investigations on other types.

View Article and Find Full Text PDF

Evidence indicates that prolonged low-level inflammation and elevated-glucose-induced oxidative stress in diabetic wounds can accelerate senescence. The accumulation of senescent cells, in turn, inhibits cellular proliferation and migration, aggravating the inflammatory response and oxidative stress, ultimately impeding wound healing. In this study, we exploited the heightened lysosomal β-galactosidase activity detected in senescent cells to develop an innovative drug delivery system by encapsulating FeO with galactose-modified poly (lactic-co-glycolic acid) (PLGA) (F@GP).

View Article and Find Full Text PDF

3D bioprinting is a revolutionary technology capable of replicating native tissue and organ microenvironments by precisely placing cells into 3D structures using bioinks. However, acquiring the ideal bioink to manufacture biomimetic constructs is challenging. A natural extracellular matrix (ECM) is an organ-specific material that provides physical, chemical, biological, and mechanical cues that are hard to mimic using a small number of components.

View Article and Find Full Text PDF

Cellular senescence describes a state of permanent proliferative arrest in cells. Studies have demonstrated that diabetes promotes the pathological accumulation of senescent cells, which in turn impairs cell movement and proliferation. Historically, senescence has been perceived to be a detrimental consequence of chronic wound healing.

View Article and Find Full Text PDF

Diabetes mellitus (DM) induced wound healing impairment remains a serious health problem and burden on the clinical obligation for high amputation rates. Based on the features of wound microenvironment, biomaterials loading specific drugs can benefit diabetic wound treatment. Drug delivery systems (DDSs) can carry diverse functional substances to the wound site.

View Article and Find Full Text PDF

Background: The most commonly acknowledged non-scarring alopecia are androgenetic alopecia (AGA) and alopecia areata (AA). Previous studies have revealed various risk factors associated with alopecia. However, the relationship between leukocyte telomere length (LTL) and non-scarring alopecia remains unclear.

View Article and Find Full Text PDF

Although both are applied in regenerative medicine, acellular dermal matrix (ADM) and concentrated growth factor (CGF) have their respective shortcoming: The functioning of CGF is often hindered by sudden release effects, among other problems, and ADM can only be used in outer dressing for wound healing. In this study, a compound network with physical-chemical double cross-linking was constructed using chemical cross-linking and the intertwining of ADM and chitosan chains under freezing conditions; equipped with good biocompatibility and cell/tissue affinity, the heparin-modified composite scaffold was able to significantly promote cell adhesion and proliferation to achieve adequate fixation and slow down the release of CGF; polydopamine nanoparticles having excellent near-infrared light photothermal conversion ability could significantly promote the survival of rat autologous skin grafts. In a word, this multifunctional composite scaffold is a promising new type of implant biomaterial capable of delivering CGF to promote the healing of full-thickness skin defects.

View Article and Find Full Text PDF

Despite increasing potentials as a skin regeneration template (DRT) to guide tissue healing, acellular dermal matrix (ADM) is still challenged by issues (like dense architecture, low cellular adhesion and poor vascularization), contributing to necrosis and shedding of upper transplanted skins. Modified with polydopamine (PDA), a novel and porous DRT capable of drug delivery was designed using porcine-derived ADM (PADMS) gels, termed PDA-PADMS. However, it was unclear whether it could efficiently deliver human acidic fibroblast growth factor (a-FGF) and regenerate skin defects.

View Article and Find Full Text PDF

Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.

View Article and Find Full Text PDF