Publications by authors named "Xuerong Lu"

Article Synopsis
  • The study investigates the role of microRNAs in Schwann cells and how their absence due to Dicer ablation leads to peripheral neuropathy in mice.
  • Researchers used transgenic mice (PLP-cKO) to explore whether healthy Schwann cell-derived exosomes (SC-Exo) could alleviate nerve damage.
  • Results showed that SC-Exo treatment improved nerve function and myelination in PLP-cKO mice, reversing the adverse effects of missing crucial miRNAs and proteins associated with nerve health.*
View Article and Find Full Text PDF

Background: Whether and how the uncertainty about a public health crisis should be communicated to the general public have been important and yet unanswered questions arising over the past few years. As the most threatening contemporary public health crisis, the COVID-19 pandemic has renewed interest in these unresolved issues by both academic scholars and public health practitioners.

Objective: The aim of this study was to investigate the impact of communicating uncertainty about COVID-19-related threats and solutions on individuals' risk perceptions and misinformation vulnerability, as well as the sequential impact of these effects on health information processing and preventative behavioral intentions.

View Article and Find Full Text PDF
Article Synopsis
  • Exosomes from endothelial cells and Schwann cells show promise as new treatments for neurological diseases like peripheral neuropathy.
  • A study analyzed the protein content of exosomes from healthy mouse endothelial cells (EC-Exo) and Schwann cells (SC-Exo), finding a total of 1,817 proteins in EC-Exo and 1,579 in SC-Exo, with 1,506 shared between both.
  • The findings indicated that EC-Exo proteins are linked to neurovascular functions, while SC-Exo proteins are associated with lipid metabolism, highlighting their unique roles in potential therapeutic applications.
View Article and Find Full Text PDF

Nanoparticles released into the environment are attracting increasing concern because of their potential toxic effects. Conventional methods for assessing the toxicity of nanoparticles are usually confined to cultivable cells, but not applicable to viable but non-culturable (VBNC) cells. However, it remains unknown whether silver nanoparticles (AgNPs), a typical antimicrobial agent, could induce bacteria into a VBNC state in natural environments.

View Article and Find Full Text PDF

There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size.

View Article and Find Full Text PDF

Background: The consistency of pathologists in the diagnosis of cervical intraepithelial neoplasia (CINs) is not ideal, especially between low- and high-grade squamous intraepithelial lesions (LSIL and HSIL). This study was aimed to explore efficient strategies for the grading of CINs.

Methods: The medical records of patients with high risk human papillomavirus (HR-HPV) infections who had underwent cervical biopsy or conization from April 2018 to April 2019 in Beijing Chao-Yang Hospital were collected and examined.

View Article and Find Full Text PDF

Background: High-risk human papillomavirus (HR-HPV) load is thought to be influenced by many factors, and the relationship between viral load and the degree of cervical lesion is controversial. This study explored the possible influencing factors of HR-HPV viral load in the uterine cervix.

Methods: A total of 605 women who needed colposcopic evaluation for abnormal cervical screening at the Affiliated Hospital of Weifang Medical University, China, between November 2017 and September 2018 were enrolled.

View Article and Find Full Text PDF

Schwann cell-derived exosomes communicate with dorsal root ganglia (DRG) neurons. The current study investigated the therapeutic effect of exosomes derived from healthy Schwann cells (SC-Exos) on diabetic peripheral neuropathy (DPN). We found that intravenous administration of SC-Exos to type 2 diabetic mice with peripheral neuropathy remarkably ameliorated DPN by improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity.

View Article and Find Full Text PDF

Diabetes induces neurovascular dysfunction leading to peripheral neuropathy. MicroRNAs (miRNAs) affect many biological processes and the development of diabetic peripheral neuropathy. In the present study, we investigated whether thymosin-β4 (Tβ4) ameliorates diabetic peripheral neuropathy and whether miR-146a mediates the effect of Tβ4 on improved neurovascular function.

View Article and Find Full Text PDF

Angiopoietin-1 (Ang1) and its receptor Tie2 regulate vascular function. Our previous study demonstrated that thymosin beta 4 (Tβ4) ameliorates neurological function of diabetic peripheral neuropathy. Mechanisms underlying the therapeutic effect of Tβ4 on diabetic peripheral neuropathy have not been fully investigated.

View Article and Find Full Text PDF

Microbial reduction decolorization is a promising strategy for cationic azo dye pollution remediation, but the reduction mechanism is unclear yet. In this work, the anaerobic reduction decolorization mechanism of cationic red X-GRL (X-GRL) by Shewanella oneidensis MR-1 (MR-1) was investigated from both intracellular and extracellular aspects. The exogenous additional riboflavin treatment test was used to analyze the extracellular reduction mechanism of X-GRL, and the actual role of riboflavin during the reduction of X-GRL was identified by three-dimensional fluorescence analysis for the first time.

View Article and Find Full Text PDF

Schwann cells actively interact with axons of dorsal root ganglia (DRG) neurons. Exosomes mediate intercellular communication by transferring their biomaterials, including microRNAs (miRs) into recipient cells. We hypothesized that exosomes derived from Schwann cells stimulated by high glucose (HG) exosomes accelerate development of diabetic peripheral neuropathy and that exosomal cargo miRs contribute to this process.

View Article and Find Full Text PDF

Hyperglycemia impairs nerve fibers of dorsal root ganglia (DRG) neurons, leading to diabetic peripheral neuropathy (DPN). However, the molecular mechanisms underlying DPN are not fully understood. Using a mouse model of type II diabetes (db/db mouse), we found that microRNA-34a (miR-34a) was over-expressed in DRG, sciatic nerve, and foot pad tissues of db/db mice.

View Article and Find Full Text PDF

Anaerobic dye degradation is usually assayed using serum vials, which is time-consuming and costly. In this work, a simple method was established for real-time nondestructive assay of dye biodegradation using 96-well microtiter plates with petrolatum oil to avoid the volatilization and high transmittance transparent tape to prevent the permeation of oxygen. With the anaerobic degradation of methyl red and amaranth by Shewanella oneidensis MR-1, this assay method was verified.

View Article and Find Full Text PDF

The ability of an electrochemically active bacterium, Shewanella oneidensis MR-1, to decolorize azo dye cationic red X-GRL (X-GRL) was investigated. S. oneidensis MR-1 showed a high decolorization capability for X-GRL under anaerobic conditions.

View Article and Find Full Text PDF

We previously demonstrated that treatment of diabetic peripheral neuropathy with the short (4 hours) half-life phosphodiesterase 5 (PDE5) inhibitor, sildenafil, improved functional outcome in diabetic db/db mice. To further examine the effect of PDE5 inhibition on diabetic peripheral neuropathy, we investigated the effect of another potent PDE5 inhibitor, tadalafil, on diabetic peripheral neuropathy. Tadalafil is pharmacokinetically distinct from sildenafil and has a longer half-life (17+hours) than sildenafil.

View Article and Find Full Text PDF

Peripheral neuropathy is a chronic complication of diabetes mellitus. To investigated the efficacy and safety of the extended treatment of diabetic peripheral neuropathy with thymosin β4 (Tβ4), male diabetic mice (db/db) at the age of 24 weeks were treated with Tβ4 or saline for 16 consecutive weeks. Treatment of diabetic mice with Tβ4 significantly improved motor (MCV) and sensory (SCV) conduction velocity in the sciatic nerve and the thermal and mechanical latency.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.

View Article and Find Full Text PDF

Expression of GJA1 (commonly known as connexin43 or Cx43), a major myometrial gap junction protein, is upregulated before the onset of delivery, suggesting an essential role for Cx43-mediated gap junctional intercellular communication (GJIC) in normal uterine contraction during parturition. To determine how a disease-linked Cx43 mutation affects myometrial function, we studied a mutant mouse model carrying an autosomal dominant mutation (Gja1(Jrt)) in the gene encoding Cx43 that displays features of the human genetic disease oculodentodigital dysplasia. We found that Cx43 level, specifically the phosphorylated species of the protein, is significantly reduced in the myometrium of the mutant mice (Gja1(Jrt)/+), as revealed by Western blotting and immunostaining.

View Article and Find Full Text PDF