Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
August 2024
Objective: To study the biological role and related mechanism of autophagy in acute lung injury (ALI) of hemorrhagic shock mice.
Methods: According to random number table method, wild-type male C57BL/6 mice were divided into control group, ALI group, rapamycin group and 3-methyladenine (3-MA) group, with 8 mice in each group. Light chain 3 (LC3) gene knockout mice with C57BL/6 background were divided into LC3 knockout group and LC3 knockout+ALI group, with 8 mice in each group.
The fabrication of chiral thin films with tunable circularly polarized luminescence (CPL) colors is important in developing chiroptical materials but remains challenging due to the lack of assembly-initiated chiral film formation methodology. Here, by adopting a combined solution aggregation and interfacial assembly strategy, we report the fabrication of chiral film materials with full-color and white-light CPL. A biquinoline glutamic acid ester (abbreviated as BQGE) shows a typical aggregation-induced emission property with blue CPL after solution aggregation.
View Article and Find Full Text PDFDespite significant achievements in the field of chiroptical organic materials, the full utilization of both the excited state and ground state chiroptical properties in a single supramolecular system is still rarely disclosed. Here, we report that the rational combination of the charge-transfer (CT) interaction with the spacer effect and controlled protonation of π-histidine leads to chiroptical organic π-materials with both circularly polarized luminescence (CPL) and the supramolecular chirality-directed chiroptical photothermic effect. Three pyrene-conjugated histidine derivatives with varied acyl linkers (PyHis, PyC1His, and PyC3His) were designed to coassemble with electron-deficient 1,2,4,5-tetracyanobenzene (TCNB), leading to the formation of supramolecular CT complexes with intense orange to red CPL depending on the linker length.
View Article and Find Full Text PDFBackground: Acute hemorrhage-induced excessive excitation of sympathetic-adrenal-medullary system (SAS) leads to gut hypoperfusion and barrier dysfunction, which is a critical event during hemorrhagic shock-induced multiple organ injury. Stellate ganglion blockade (SGB) has been widely used for suppression of sympathetic-adrenal-medullary system in the clinical practice. However, whether SGB improves intestinal barrier function after hemorrhagic shock remains unclear.
View Article and Find Full Text PDF