Publications by authors named "Xueping Zhou"

Potyvirids are the largest group of plant RNA viruses. Pelota, a core component of RNA quality controls (RQC), promotes the degradation of potyvirids' genomic RNA by recognizing a specific GA motif. Here we demonstrate that the viral RNA-dependent RNA polymerase, NIb, acts as a SUMOylation decoy to effectively reduce Pelota SUMOylation by competing with SCE1 to inhibit Pelota-mediated RQC.

View Article and Find Full Text PDF

The chemical modification of DNA and proteins is an efficient way of regulating molecular and biological function and affects a plethora of signalling pathways in eukaryotes. Similarly, recent progress in epitranscriptomics shows that RNA modifications also play crucial roles in diverse biological processes. Since their discovery in the 1970s, scientists have attempted to decipher the identity and functions of these modifications in different biological systems.

View Article and Find Full Text PDF
Article Synopsis
  • - In situ epitope tagging is essential for studying gene expression, protein location, and protein interactions in cells, but applying this technique to plants, like rice, is challenging.
  • - Researchers investigated using CRISPR/Cas-based prime editing methods for epitope tagging in rice genes and found a specific method (NM-PE) that is more efficient and easier than traditional methods.
  • - The NM-PE method enabled successful tagging of specific genes (OsMPK1 and OsMPK13) in rice, showing promise for advancing research in the Rice Protein Tagging Project and enhancing genetic studies.
View Article and Find Full Text PDF

The unfolded protein response (UPR) is a vital cellular pathway that maintains endoplasmic reticulum (ER) homeostasis under conditions of ER stress, which is associated with the degradation of misfolded proteins. However, the role of ER-associated degradation in plant-microbe interactions has yet to be explored. In this study, we identified a novel viral protein βV1, encoded by tomato yellow leaf curl betasatellite (TYLCCNB), is an ER-localized protein that triggers ER aggregation.

View Article and Find Full Text PDF

Soybean is one of the most valuable legume crops in the world. Soybean stay-green syndrome (SGS), which causes delayed leaf senescence (stay-green), flat pods, and abnormal seeds of soybean, has become one of the most serious diseases of soybean in the Huang-Huai-Hai Valley of China. However, the causal agent of SGS was controversial.

View Article and Find Full Text PDF

We propose a supervised learning bioinformatics tool, Biological gRoup guIded muLtivariate muLtiple lIneAr regression with peNalizaTion (Brilliant), designed for feature selection and outcome prediction in genomic data with multi-phenotypic responses. Brilliant specifically incorporates genome and/or phenotype grouping structures, as well as phenotype correlation structures, in feature selection, effect estimation, and outcome prediction under a penalized multi-response linear regression model. Extensive simulations demonstrate its superior performance compared to competing methods.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons. Recent research has emphasized a significant correlation between microRNAs (miRNAs) and PD. To identify key research areas, provide a comprehensive overview of current research in various fields, and propose potential directions for future studies, a bibliometric analysis was conducted on the involvement of miRNAs in Parkinson's disease from 2014 to 2023.

View Article and Find Full Text PDF

Maize chlorotic mottle virus (MCMV) is one of the main viruses causing significant losses in maize. N-methyladenosine (mA) RNA modification has been proven to play important regulatory roles in plant development and stress response. In this study, we found that MCMV infection significantly up-regulated the mA level in maize, and methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were performed to investigate the distribution of mA modified peaks and gene expression patterns in MCMV-infected maize plants.

View Article and Find Full Text PDF

Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa.

View Article and Find Full Text PDF

Triptolide (TP), known for its effectiveness in treating various rheumatoid diseases, is also associated with significant hepatotoxicity risks. This study explored Catalpol (CAT), an iridoid glycoside with antioxidative and anti-inflammatory effects, as a potential defense against TP-induced liver damage. and models of liver injury were established using TP in combination with different concentrations of CAT.

View Article and Find Full Text PDF

Two guanine base editors created using an engineered N-methylpurine DNA glycosylase with CRISPR systems achieved targeted G-to-T editing with 4.94-12.50% efficiency in rice (Oryza sativa).

View Article and Find Full Text PDF

The use of biological agents offers a sustainable alternative to chemical control in managing plant diseases. In this study, Bacillus velezensis IFST-221 was isolated from the rhizosphere of a healthy maize plant amidst a population showing severe disease symptoms. The investigation demonstrated a broad-spectrum antagonistic activity of IFST-221 against eight species of pathogenic ascomycetes and oomycetes, suggesting its potential utility in combating plant diseases like maize ear rot and cotton Verticillium wilt.

View Article and Find Full Text PDF

CRISPR-mediated base editors have been widely used to correct defective alleles and create novel alleles by artificial evolution for the rapid genetic improvement of crops. The editing capabilities of base editors strictly rely on the performance of various nucleotide modification enzymes. Compared with the well-developed adenine base editors (ABEs), cytosine base editors (CBEs) and dual base editors suffer from unstable editing efficiency and patterns at different genomic loci in rice, significantly limiting their application.

View Article and Find Full Text PDF

The occurrence of geminiviruses causes significant economic losses in many economically important crops. In this study, a novel geminivirus isolated from tobacco in Sichuan province of China, named tomato leaf curl Chuxiong virus (TLCCxV), was characterized by small RNA-based deep sequencing. The full-length of TLCCxV genome was determined to be 2744 nucleotides (nt) encoding six open reading frames.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD), characterized by the loss of dopaminergic neurons, is a progressive neurodegenerative disorder. Recent research has revealed a significant connection between gut microbiota and PD. To gain insight into research interests, disciplinary contexts, and potential future directions, a comprehensive bibliometric analysis was conducted on the brain-gut axis and PD literature published between 2014 and 2023.

View Article and Find Full Text PDF

Geminiviruses are a group of single-stranded DNA viruses that have developed multiple strategies to overcome host defenses and establish viral infections. Sucrose nonfermenting-1-related kinase 1 (SnRK1) is a key regulator of energy balance in plants and plays an important role in plant development and immune defenses. As a heterotrimeric complex, SnRK1 is composed of a catalytic subunit α (SnRK1 α) and two regulatory subunits, β and γ.

View Article and Find Full Text PDF

Ixeris denticulata is a perennial herbal plant with important medical and economic value. In this study, a novel rhabdovirus from I. denticulata with leaf curling and mottle symptoms was identified through next-generation sequencing and molecular cloning approaches.

View Article and Find Full Text PDF

Hibiscus latent Singapore virus (HLSV) and Hibiscus latent Fort Pierce virus (HLFPV) both belong to the genus Tobamovirus in the family Virgaviridae. The genomes of both HLSV and HLFPV consist of a linear positive sense single-stranded RNA of about 6.3 kb.

View Article and Find Full Text PDF

Multilayered defense responses are activated upon pathogen attack. Viruses utilize a number of strategies to maximize the coding capacity of their small genomes and produce viral proteins for infection, including suppression of host defense. Here, we reveal translation leakage as one of these strategies: two viral effectors encoded by tomato golden mosaic virus, chloroplast-localized C4 (cC4) and membrane-associated C4 (mC4), are translated from two in-frame start codons and function cooperatively to suppress defense.

View Article and Find Full Text PDF

The damage caused by the white-back planthopper (WBPH, ) and brown planthopper (BPH, ), as well as southern rice black-streaked dwarf virus (SRBSDV), considerably decreases the grain yield of rice. Identification of rice germplasms with sufficient resistance to planthoppers and SRBSDV is essential to the breeding and deployment of resistant varieties and, hence, the control of the pests and disease. In this study, 318 rice accessions were evaluated for their reactions to the infestation of both BPH and WBPH at the seedling stage using the standard seed-box screening test method; insect quantification was further conducted at the end of the tillering and grain-filling stages in field trials.

View Article and Find Full Text PDF