Bioinformatics
June 2022
Motivation: Cancer is a heterogeneous group of diseases. Cancer subtyping is a crucial and critical step to diagnosis, prognosis and treatment. Since high-throughput sequencing technologies provide an unprecedented opportunity to rapidly collect multi-omics data for the same individuals, an urgent need in current is how to effectively represent and integrate these multi-omics data to achieve clinically meaningful cancer subtyping.
View Article and Find Full Text PDFIn the present study, the complete chloroplast genome of is presented and characterized for the first time. The complete chloroplast genome was 156,121 bp in length, including 23,899 bp inverted repeat (IR) regions, an 89,466 bp large single-copy (LSC) region, and an 18,851 bp small single-copy (SSC) region. A total of 129 genes, including 37 tRNA genes, eight rRNA genes, and 84 protein-coding genes, were annotated, and the overall GC content of the chloroplast genome was 38.
View Article and Find Full Text PDFMultimed Tools Appl
December 2021
Wearing a mask is an important way of preventing COVID-19 transmission and infection. German researchers found that wearing masks can effectively reduce the infection rate of COVID-19 by 40%. However, the detection of face mask-wearing in the real world is affected by factors such as light, occlusion, and multi-object.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2021
Controlling soil erosion is beneficial to the conservation of soil resources and ecological restoration. Understanding the spatial distribution characteristics of soil erosion helps find the key areas for soil control projects and optimal scale for investing in a soil and water conservation project at the lowest cost. This study aims to answer the question of how the spatial distribution of soil erosion in Hubei Province changed between 2000 and 2020.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2021
Researchers and managers of natural resource conservation have increasingly emphasized the importance of maintaining a connected network of important ecological patches to mitigate landscape fragmentation, reduce the decline of biodiversity, and sustain ecological services. This research aimed to guide landscape management and decision-making by developing an evaluation framework to construct ecological security patterns. Taking the Jianghan Plain as the study area, we identified key ecological sources by overlaying the spatial patterns of ecological quality (biodiversity, carbon storage, and water yield) and ecological sensitivity (habitat sensitivity, soil erosion sensitivity, and water sensitivity) using the Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model and the Chinese Soil Loss Equation Function.
View Article and Find Full Text PDF