The plasma membrane-localized phytosulfokine receptor-like protein TaRLK-6A, interacting with TaSERK1, positively regulates the expression of defense-related genes in wheat, consequently promotes host resistance to Fusarium crown rot.
View Article and Find Full Text PDFIn plant, APETALA2/ethylene-responsive factor (AP2/ERF)-domain transcription factors are important in regulating abiotic stress tolerance. In this study, ZmEREB57 encoding a AP2/ERF transcription factor was identified and its function was investigated in maize. ZmEREB57 is a nuclear protein with transactivation activity induced by several abiotic stress types.
View Article and Find Full Text PDFSeed dormancy is an important agronomic trait in crops, and plants with low dormancy are prone to preharvest sprouting (PHS) under high-temperature and humid conditions. In this study, we report that the GATA transcription factor TaGATA1 is a positive regulator of seed dormancy by regulating TaABI5 expression in wheat. Our results demonstrate that TaGATA1 overexpression significantly enhances seed dormancy and increases resistance to PHS in wheat.
View Article and Find Full Text PDFSTAUROSPORINE AND TEMPERATURE SENSITIVE3 (STT3) is a catalytic subunit of oligosaccharyltransferase, which is important for asparagine-linked glycosylation. Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat. However, the molecular mechanisms underlying wheat defense against R.
View Article and Find Full Text PDFThe fungus can cause the destructive disease Fusarium crown rot (FCR) of wheat, an important staple crop. Functional roles of FCR resistance genes in wheat are largely unknown. In the current research, we characterized the antifungal activity and positive-regulatory function of the cysteine-rich repeat receptor-like kinase TaCRK-7A in the defense against in wheat.
View Article and Find Full Text PDFThe soil-borne fungi and are the major pathogens for the economically important diseases crown rot (FCR) and sharp eyespot of common wheat (), respectively. However, there has been no report on the broad resistance of wheat genes against both and . In the current study, we identified , a wall-associated kinase (WAK) which is an encoding gene located on chromosome 6D, and demonstrated its broad resistance role in the wheat responses to both and infection.
View Article and Find Full Text PDFWheat (Triticum aestivum) is essential for global food security. Rhizoctonia cerealis is the causal pathogen of sharp eyespot, an important disease of wheat. GATA proteins in model plants have been implicated in growth and development; however, little is known about their roles in immunity.
View Article and Find Full Text PDFWaterlogging causes oxygen deprivation within plant roots and affects crop growth and yield. In crop wheat (Triticum aestivum), molecular responses to waterlogging are poorly understood. Here, we performed a genome-wide analysis of group VII ethylene response factor (ERFVII) genes in hexaploid wheat and identified 25 genes, which were induced by waterlogging with diverse manner.
View Article and Find Full Text PDFMYB transcription factors (TFs) have been implicated in various biology processes in model plants. However, functions of the great majority of MYB TFs in wheat (Triticum aestivum L.) have not been characterized.
View Article and Find Full Text PDFSharp eyespot, caused mainly by the necrotrophic fungus , is a destructive disease in hexaploid wheat ( L.). In , certain cinnamyl alcohol dehydrogenases (CADs) have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection.
View Article and Find Full Text PDFSharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, limits wheat production worldwide. Here, TaCPK7-D, encoding a subgroup III member of the calcium-dependent protein kinase (CPK) family, was identified from the sharp eyespot-resistant wheat line CI12633 through comparative transcriptomic analysis. Subsequently, the defence role of TaCPK7-D against R.
View Article and Find Full Text PDFConsiderable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat.
View Article and Find Full Text PDFTake-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.).
View Article and Find Full Text PDFSharp eyespot disease (primarily caused by the pathogen Rhizoctonia cerealis) and freezing stress are important yield limitations for the production of wheat (Triticum aestivum). Here, we report new insights into the function and underlying mechanisms of an ethylene response factor (ERF) in wheat, Pathogen-Induced ERF1 (TaPIE1), in host responses to R. cerealis and freezing stresses.
View Article and Find Full Text PDFCysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis.
View Article and Find Full Text PDFGinsenoside Rh2 (G-Rh2) has been shown to induce apoptotic cell death in a variety of cancer cells. However, the details of the signal transduction cascade involved in G-Rh2-induced cell death is unclear. In this manuscript we elucidate the molecular mechanism of G-Rh2-induced apoptosis in human hepatoma SK-HEP-1 cells by demonstrating that G-Rh2 causes rapid and dramatic translocation of both Bak and Bax, which subsequently triggers mitochondrial cytochrome c release and consequent caspase activation.
View Article and Find Full Text PDFIn this study, we report new insights into the function of a wheat (Triticum aestivum) MYB gene TaPIMP1 through overexpression and underexpression, and its underlying mechanism in wheat. Electrophoretic mobility shift and yeast-one-hybrid assays indicated that TaPIMP1 can bind to five MYB-binding sites including ACI, and activate the expression of the genes with the cis-element, confirming that TaPIMP1 is an MYB transcription activator. TaPIMP1-overexpressing transgenic wheat exhibited significantly enhanced resistance to the fungal pathogen Bipolaris sorokiniana and drought stresses, whereas TaPIMP1-underexpressing transgenic wheat showed more susceptibility to the stresses compared with untransformed wheat, revealing that TaPIMP1 positively modulates host-defense responses to B.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) molecular chaperones play important roles in plant growth and responses to environmental stimuli. However, little is known about the genes encoding Hsp90s in common wheat. Here, we report genetic and functional analysis of the genes specifying cytosolic Hsp90s in this species.
View Article and Find Full Text PDF