Objective: To develop a deep learning model to predict lymph node (LN) status in clinical stage IA lung adenocarcinoma patients.
Methods: This diagnostic study included 1,009 patients with pathologically confirmed clinical stage T1N0M0 lung adenocarcinoma from two independent datasets (699 from Cancer Hospital of Chinese Academy of Medical Sciences and 310 from PLA General Hospital) between January 2005 and December 2019. The Cancer Hospital dataset was randomly split into a training cohort (559 patients) and a validation cohort (140 patients) to train and tune a deep learning model based on a deep residual network (ResNet).
Background: Different pathological subtypes of invasive pulmonary adenocarcinoma (IPA) have different surgical methods and heterogeneous prognosis. It is essential to clarify IPA subtypes before operation and high-resolution computed tomography (HRCT) plays a very important role in this regard. We aimed to investigate the HRCT features of lepidic-predominant type and other pathological subtypes of early-stage (T1N0M0) IPA appearing as a ground-glass nodule (GGN).
View Article and Find Full Text PDFZhongguo Yi Xue Ke Xue Yuan Xue Bao
August 2020
To make a preliminary pathological classification of lung adenocarcinoma with pure ground glass nodules(pGGN)on CT by using a deep learning model. CT images and pathological data of 219 patients(240 lesions in total)with pGGN on CT and pathologically confirmed adenocarcinoma were collected.According to pathological subtypes,the lesions were divided into non-invasive lung adenocarcinoma group(which included atypical adenomatous hyperplasia and adenocarcinoma in situ and micro-invasive adenocarcinoma)and invasive lung adenocarcinoma group.
View Article and Find Full Text PDF