Objective: This study aims to investigate the regulation of host gene transcription and microbial changes during the development of oral squamous cell carcinoma (OSCC) associated with smoking.
Methods: The OSCC mouse model and smoking mouse model were established using 200 μg/mL 4-nitroquinoline-1-oxide (4NQO) in drinking water and exposure to cigarette smoke (four cigarettes per session, once a day, 5 days a week). Tongue tissues were harvested at 4 weeks and 16 weeks.
Aim: Angiogenesis is a key event in the successful healing of pulp injuries, and hypoxia is the main stimulator of pulpal angiogenesis. In this study, we investigated the effect of hypoxia on the proangiogenic potential of human dental pulp stem cells (hDPSCs) and the role of miR-143-5p in the process.
Methodology: Human dental pulp stem cells were isolated, cultured and characterized in vitro.
Introduction: Substance P (SP) is a neuropeptide released from the nervous fibers in response to injury. In addition to its association with pain and reactions to anxiety and stress, SP exerts various physiological functions by binding to the neurokinin-1 receptor (NK1R). However, the expression and role of SP in reparative dentinogenesis remain elusive.
View Article and Find Full Text PDFIntroduction: While 15 to 20% of cancers are associated with microbial infection, the relationship between oral microorganisms and oral squamous cell carcinoma (OSCC) remains unclear. The location of bacteria in a tumor is closely related to its carcinogenic mechanism. The aim of this study was to analyse bacterial diversity in clinical OSCC tissue samples and tumor distant normal tissues, locate target bacteria, and search for proteins that may interact with target bacteria.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is the most common type of malignancy of the head and neck. In the present study, the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) was evaluated in 55 OSCC tissues and their corresponding adjacent tissues using immunohistochemistry and reverse-transcription quantitative PCR. The results indicated that TLR4 and MyD88 were overexpressed in OSCC.
View Article and Find Full Text PDF