The detection of heavy metals in tea infusions is important because of the potential health risks associated with their consumption. Existing highly sensitive detection methods pose challenges because they are complicated and time-consuming. In this study, we developed an innovative and simple method using Ag nanoparticles-modified resin (AgNPs-MR) for pre-enrichment prior to laser-induced breakdown spectroscopy for the simultaneous analysis of Cr (III), Cu (II), and Pb (II) in tea infusions.
View Article and Find Full Text PDFOwing to iron chlorosis, pear trees are some of the most severely impacted by iron deficiency, and they suffer significant losses every year. While it is possible to determine the iron content of leaves using laboratory-standard analytical techniques, the sampling and analysis process is time-consuming and labor-intensive, and it does not quickly and accurately identify the physiological state of iron-deficient leaves. Therefore, it is crucial to find a precise and quick visualization approach for metabolites linked to leaf iron to comprehend the mechanism of iron deficiency and create management strategies for pear-tree planting.
View Article and Find Full Text PDFThe rapid and sensitive detection of heavy metal ions is important for environment and human health. Hence, the rapid and sensitive detection of multiple heavy metals simultaneously has become a critical issue. Here, we propose a method based on laser-induced breakdown spectroscopy (LIBS) combined with filter paper modified with PtAg bimetallic nanoparticles (BNPs) (LIBS-FP-PtAgBNPs) for the ultrasensitive detection of Hg, Cr, and Pb.
View Article and Find Full Text PDFA novel and effective method named time-resolved spectral-image laser-induced breakdown spectroscopy (TRSI-LIBS) was proposed to achieve precise qualitative and quantitative analysis of milk powder quality. To verify the feasibility of TRSI-LIBS, qualitative and quantitative analysis of milk powder quality was carried out. For qualitative analysis of foreign protein adulteration, the accuracy of models based on TRSI-LIBS was higher than those based on LIBS, with an accuracy improvement of about 5% to 10%.
View Article and Find Full Text PDF