Publications by authors named "Xueliang Huo"

The purpose of this study was to compare the motor performance of tongue, using Tongue Drive System, to hand operation for relatively complex tasks under different levels of background physical exertion. Thirteen young able-bodied adults performed tasks that tested the accuracy and variability in tracking a sinusoidal waveform, and the performance in playing two video games that require accurate and rapid movements with cognitive processing using tongue and hand under two levels of background physical exertion. Results show additional background physical activity did not influence rapid and accurate displacement motor performance, but compromised the slow waveform tracking and shooting performances in both hand and tongue.

View Article and Find Full Text PDF

Wireless power and data transmission have created promising prospects in biomedical research by enabling perpetual data acquisition and stimulation systems. We present a work in progress towards such a system, called the EnerCage, equipped with scalable arrays of overlapping planar spiral coils (PSC) and 3-axis magnetic sensors for focused wireless power transmission to randomly moving targets, such as small freely behaving animal subjects. The EnerCage system includes a stationary unit for 3D non-line-of-sight localization and inductive power transmission through a geometrically optimized PSC array.

View Article and Find Full Text PDF

Motivation plays an important role in the outcome of motor learning but has not received attention in tongue-training-induced plasticity of the corticomotor pathways. The present study investigated the influence of two different motivational conditions and gender on performance during a complex tongue-training paradigm using the tongue drive system (TDS). In addition, subject-based reports of motivation, fun, pain, and fatigue were compared between groups and genders.

View Article and Find Full Text PDF

We are presenting a new wireless and wearable human computer interface called the dual-mode Tongue Drive System (dTDS), which is designed to allow people with severe disabilities to use computers more effectively with increased speed, flexibility, usability, and independence through their tongue motion and speech. The dTDS detects users' tongue motion using a magnetic tracer and an array of magnetic sensors embedded in a compact and ergonomic wireless headset. It also captures the users' voice wirelessly using a small microphone embedded in the same headset.

View Article and Find Full Text PDF

Tongue drive system (TDS) is a novel tongue-operated assistive technology (AT) for the mobility impaired, to empower them to access computers and drive powered wheelchairs (PWC) using their free voluntary tongue motion. We have evaluated the TDS performance in five sessions over 5-8 weeks to study the learning process in different tasks of computer access and PWC navigation on nine able-bodied subjects who already had tongue piercing and used our magnetic tongue studs throughout the trial. Computer access tasks included on-screen maze navigation and issuing random commands to measure the TDS information transfer rate.

View Article and Find Full Text PDF

Tongue drive system (TDS) is a new wireless assistive technology (AT) for the mobility impaired population. It provides users with the ability to drive powered wheelchairs (PWC) and access computers using their unconstrained tongue motion. Migration of the TDS processing unit and user interface platform from a bulky personal computer to a smartphone (iPhone) has significantly facilitated its usage by turning it into a true wireless and wearable AT.

View Article and Find Full Text PDF

Relearning of motor skills is important in neurorehabilitation. We investigated the improvement of training success during simple tongue protrusion (two force levels) and a more complex tongue-training paradigm using the Tongue Drive System (TDS). We also compared subject-based reports of fun, pain, fatigue, and motivation between paradigms.

View Article and Find Full Text PDF

Tongue Drive System (TDS) is a wireless tongue-operated assistive technology (AT), developed for people with severe physical disabilities to control their environment using their tongue motion. We have developed a new ergonomic headset for the TDS with a user-friendly smartphone interface, through which users will be able to wirelessly control various devices, access computers, and drive wheelchairs. This headset design is expected to act as a flexible and multifunctional communication interface for the TDS and improve its usability, accessibility, aesthetics, and convenience for the end users.

View Article and Find Full Text PDF

Tongue Drive System (TDS) is a wireless tongue operated assistive technology (AT), which can enable people with severe physical disabilities to access computers and drive powered wheelchairs using their volitional tongue movements. TDS offers six discrete commands, simultaneously available to the users, for pointing and typing as a substitute for mouse and keyboard in computer access, respectively. To enhance the TDS performance in typing, we have added a microphone, an audio codec, and a wireless audio link to its readily available 3-axial magnetic sensor array, and combined it with a commercially available speech recognition software, the Dragon Naturally Speaking, which is regarded as one of the most efficient ways for text entry.

View Article and Find Full Text PDF

Tongue Drive System (TDS) is a wireless, wearable assistive technology that enables individuals with severe motor impairments access computers, drive wheelchairs, and control their environments using tongue motion. In this paper, we have evaluated the TDS performance as a computer input device using ISO9241-9 standard tasks for pointing and selecting, based on the well known Fitts' Law, and as a powered wheelchair controller through an obstacle course navigation task. Nine able-bodied subjects who already had tongue piercing participated in this trial over 5 sessions during 5 weeks, allowing us to study the TDS learning process and its current limiting factors.

View Article and Find Full Text PDF

Tongue Drive System (TDS) is a new assistive technology that enables individuals with severe disabilities such as those with spinal cord injury (SCI) to regain environmental control using their tongue motion. We have developed a new sensor signal processing (SSP) algorithm which uses four 3-axial magneto-resistive sensor outputs to accurately detect and classify between seven different user-control commands in stationary as well as mobile conditions. The new algorithm employs a two-stage classification method with a combination of 9 classifiers to discriminate between 4 commands on the left or right side of the oral cavity (one neutral command shared on both sides).

View Article and Find Full Text PDF

Background: To provide an alternative motor modality for control, navigation, and communication in individuals suffering from impairment or disability in hand functions, a Tongue Drive System (TDS) has been developed that allows for real time tracking of tongue motion in an unobtrusive, wireless, and wearable device that utilizes the magnetic field generated by a miniature disk shaped magnetic tracer attached to the tip of the tongue. The purpose of the study was to compare the influence of a concurrent motor or cognitive task on various aspects of simple movement control between hand and tongue using the TDS technology.

Methods: Thirteen young able-bodied adults performed rapid and slow goal-directed movements of hand and tongue (with TDS) with and without a concurrent motor (hand or tongue) or cognitive (arithmetic and memory) task.

View Article and Find Full Text PDF

Tongue drive system (TDS) is a wireless, wearable assistive technology that enables individuals with severe motor impairments to access computers, drive wheelchairs, and control their environments using tongue motion. In this paper, we have evaluated the TDS performance as a computer input device in four tasks, commonly known as horizontal, vertical, center-out, and multidirectional rapid tapping, based on Fitts' law and ISO9241-9 Standard. Nine able-bodied subjects, who already had tongue piercing, participated in this trial over five sessions during 5 weeks, allowing us to study the TDS learning process and its current limiting factors.

View Article and Find Full Text PDF

Tongue Drive System (TDS) is an unobtrusive, wireless, and wearable device that allows for real time tracking of the tongue motion in the oral space for communication, control, and navigation applications. Utilizing the TDS, we were able to assess the use of tongue motion as a voluntary motor modality and its effect on the human performance in a realistic environment. Preliminary human trials were conducted on 13 able-bodied subjects to assess the speed and accuracy of rapid repetitive goal-directed movements during independent or concurrent use of hand (index finger) and the tongue.

View Article and Find Full Text PDF

In this paper, the results of a 2-D center-out task in a Fitts's law experiment have been presented for measuring the performance of the Tongue Drive System (TDS). Although the end-user population for TDS is individuals with tetraplegia, in this study, we recruited 6 able-bodied subjects in 3 sessions, conducted in 3 consecutive days. They performed the same task with their right hand using a standard mouse for achieving a baseline as well as a standard keypad with their right index finger.

View Article and Find Full Text PDF

Intra-oral wireless devices are becoming more popular for physiological monitoring of the mouth environment and tongue-operated assistive technologies, such as the internal Tongue Drive System (iTDS). Here we present the experimental measurements and simulations of radiation performance of three commercial wireless transmitters operating at 433 MHz, 915 MHz, and 2.42 GHz, in the industrial-scientific-medical band when they were placed inside human mouth.

View Article and Find Full Text PDF

Tongue Drive System (TDS) is a noninvasive, wireless and wearable assistive technology that helps people with severe disabilities control their environments using their tongue motion. TDS translates specific tongue gestures to commands by detecting a small permanent magnetic tracer on the users' tongue. We have linked the TDS to a smartphone (iPhone/iPod Touch) with a customized wireless module, added to the iPhone.

View Article and Find Full Text PDF

The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue-computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair.

View Article and Find Full Text PDF

Tongue Drive System (TDS) is a tongue operated, unobtrusive, minimally invasive, wireless assistive technology (AT), which can enable people with severe disabilities to control different devices using their tongue motion. TDS can translate specific tongue movements into user-defined commands by detecting the position of a small permanent magnetic tracer attached to the users' tongue. We have built an external TDS (eTDS) prototype on a wireless headphone and interfaced it to a laptop and a commercial powered wheelchair (PWC).

View Article and Find Full Text PDF

This paper presents a new magnetic localization system based on a compact triangular sensor setup and three different optimization algorithms, intended for tracking tongue motion in the 3-D oral space. A small permanent magnet, secured on the tongue by tissue adhesives, will be used as a tracer. The magnetic field variations due to tongue motion are detected by a 3-D magneto-inductive sensor array outside the mouth and wirelessly transmitted to a computer.

View Article and Find Full Text PDF

Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice.

View Article and Find Full Text PDF

We have devised a new magnetic localization technique to accurately track 3-D tongue movements during speech and ingestion. A small permanent magnet secured on the tongue by tissue adhesives, is utilized as a tracer. The magnetic field variations due to tongue motion are detected by three 3-axis magneto-inductive sensor modules outside the mouth, and wirelessly transmitted to a computer for further processing.

View Article and Find Full Text PDF

Tongue Drive system (TDS) is a tongue-operated unobtrusive wireless assistive technology, which can potentially provide people with severe disabilities with effective computer access and environment control. It translates users' intentions into control commands by detecting and classifying their voluntary tongue motion utilizing a small permanent magnet, secured on the tongue, and an array of magnetic sensors mounted on a headset outside the mouth or an orthodontic brace inside. We have developed customized interface circuitry and implemented four control strategies to drive a powered wheelchair (PWC) using an external TDS prototype.

View Article and Find Full Text PDF

We have developed a wireless, noncontact, unobtrusive, tongue-operated assistive technology called the Tongue Drive System (TDS). The TDS provides people with minimal or no movement ability in their upper limbs with an efficacious tool for computer access and environmental control. A small permanent magnet secured on the tongue by implantation, piercing, or tissue adhesives is used as a tracer, the movement of which is detected by an array of magnetic field sensors mounted on a headset outside the mouth or on an orthodontic brace inside.

View Article and Find Full Text PDF

We have developed a noninvasive, unobtrusive magnetic wireless tongue-computer interface, called "Tongue Drive," to provide people with severe disabilities with flexible and effective computer access and environment control. A small permanent magnet secured on the tongue by implantation, piercing, or tissue adhesives, is utilized as a tracer to track the tongue movements. The magnetic field variations inside and around the mouth due to the tongue movements are detected by a pair of three-axial linear magneto-inductive sensor modules mounted bilaterally on a headset near the user's cheeks.

View Article and Find Full Text PDF