The AtLa1 protein is an RNA binding factor that initiates the translation of WUSCHEL (WUS) mRNA in Arabidopsis. The AtLa1 protein can regulate the stem cell homeostasis via the nuclear-to-cytoplasmic translocation in response to environmental hazards. However, the translocation mechanism of AtLa1 protein remains to be elucidated.
View Article and Find Full Text PDFAutomatic species identification has many advantages over traditional species identification. Currently, most plant automatic identification methods focus on the features of leaf shape, venation and texture, which are promising for the identification of some plant species. However, leaf tooth, a feature commonly used in traditional species identification, is ignored.
View Article and Find Full Text PDFPlant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region.
View Article and Find Full Text PDFBackground: The ability to present signalling molecules within a low fouling 3D environment that mimics the extracellular matrix is an important goal for a range of biomedical applications, both in vitro and in vivo. Cell responses can be triggered by non-specific protein interactions occurring on the surface of a biomaterial, which is an undesirable process when studying specific receptor-ligand interactions. It is therefore useful to present specific ligands of interest to cell surface receptors in a 3D environment that minimizes non-specific interactions with biomolecules, such as proteins.
View Article and Find Full Text PDFNano-sized graphene and graphene oxide (GO) are promising for biomedical applications, such as drug delivery and photothermal therapy of cancer. It is observed in this work that the ultrafast reduction of GO nanoparticles (GONs) with a femtosecond laser beam creates extensive microbubbling. To understand the surface chemistry of GONs on the microbubble formation, the GONs were reduced to remove most of the oxygen-containing groups to get reduced GONs (rGONs).
View Article and Find Full Text PDFThe photoinduced growth reaction of silver nanoparticles was accelerated by reduced graphene oxide (RGO) produced from graphene oxide (GO) during the light irradiation process in aqueous solution. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy demonstrated that RGO was generated in the photoinduced process. The acceleration effect of RGO was investigated through monitoring the extinction spectra of silver nanoparticles during the synthesis process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2013
Shape conversions of silver nanoplates were realized by heating and subsequent light irradiation. The initial silver nanoprisms were transformed into silver nanodisks gradually in the process of heating, which was possibly achieved through dissolving and readsorption of silver atoms on the surface of silver nanoplates. Subsequently, under light irradiation, the heating induced silver nanodisks were reversed to silver nanoprisms in the same solution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2012
Reduced graphene oxide (RGO) coated with ZnO nanoparticles (NPs) was synthesized by a self-assembly and in situ photoreduction method, and then their application for removing organic pollutant from water was investigated. The RGO@ZnO composite nanomaterial has unique structural features including well-dispersed NPs on the surface and dense NPs loading. This composite exhibited a greatly improved Rhodamine B (RhB) adsorption capacity and an improved photocatalytic activity for degrading RhB compared to neat ZnO NPs.
View Article and Find Full Text PDFAqueous solutions of graphene oxide (GO) and citrate-stabilised gold nanoparticles (AuNPs) are two classic, negatively charged colloids. Using the surface plasmon resonance spectra of AuNPs as a probe, we illustrate how the two like-charged colloids interact with each other and in so doing, reveal the unique solution behaviour of GO. We demonstrate that the electrical double layer of the GO sheets in water plays a key role in controlling the interaction between GO and AuNPs, which displays a one-way gate effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2002
The surfactant-encapsulated cluster (SEC) composed of a hydrophobic dimethyl dioctadecyl ammonium (DODA) shell and an encapsulated hydrophilic polyoxoanion core can form casting films. The structure of the casting film is influenced by evaporation rates of organic solvent. When the casting films are prepared by slow evaporation of chloroform, the alkyl chains are considered to possess a partial interdigitation, and the interdigitated length is 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2002
A precursor film has been fabricated from TGA (thiolglycolic acid)-stabilized CdTe nanoparticles and NDR (nitro-containing diazoresin) using electrostatic interactions and the standard layer-by-layer assembly method; covalent bonds are formed under ultraviolet irradiation. XPS provided evidence for the presence of CdTe nanoparticles within the polymer ultrathin films. UV-visible spectroscopy and FTIR spectroscopy provide evidence for the formation of a covalent linkage.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2005
The recognition of electrostatically-bound DNA-didodecyldimethylammonium (DNA-DDDA) complex by three dye molecules, acridine orange (AO), ethidium bromide (EB) and 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin tetra(p-toluenesulfonate) (TMPyP) in organic media was investigated through 1H NMR, UV-vis, and circular dichroism (CD) spectroscopies. When the organic solvent in which DNA-DDDA complex dissolves is changed from ethanol to chloroform, the adsorbed AO undergoes a reversible transformation from a monomer to a highly aggregated state at the interface between DNA and DDDA. EB also adsorbs at the interface between DNA and DDDA when EB interacts with the DNA-DDDA complex in organic media, but its existing state is independent of the used solvents.
View Article and Find Full Text PDFThe title compound (systematic name: 4,4'-ethylenedipyridinium dimaleate), C(12)H(12)N(2)(2+).2C(4)H(3)O(4)(-), is a 1:2 adduct of 1,2-bis(4-pyridyl)ethylene (BPE) and maleic acid (MA). The interaction between the two components in the molecular complex is due to intermolecular hydrogen bonding via an N(+)-H.
View Article and Find Full Text PDF