Marine planktonic bacteria and archaea commonly exhibit pronounced seasonal succession in community composition. But the existence of seasonality in their assembly processes and between-domain differences in underlying mechanism are largely unassessed. Using a high-coverage sampling strategy (including single sample for each station during four cruises in different seasons), 16S rRNA gene sequencing, and null models, we investigated seasonal patterns in the processes governing spatial turnover of bacteria and archaea in surface coastal waters across a sampling grid over ~300 km in the East China Sea.
View Article and Find Full Text PDFA 20-day trial was conducted to reveal bacterial community dynamics in a commercial nursery of larval larvae. The bacterial communities in the ambient water were profiled by high-throughput sequencing of the V4-V5 hypervariable region of the 16S rRNA gene. The results indicated that the dominant bacterial phyla between the metamorphosis stage and postlarval stage were Bacteroidetes, Proteobacteria, Cyanobacteria, and Firmicutes, representing more than 80.
View Article and Find Full Text PDFBackground: Blood clams (Tegillarca granosa) are one of the most commercial shellfish in China and South Asia with wide distribution in Indo-Pacific tropical to temperate estuaries. However, recent data indicate a decline in the germplasm of this species. Furthermore, the molecular mechanisms underpinning reproductive regulation remain unclear and information regarding genetic diversity is limited.
View Article and Find Full Text PDFAlthough the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca oscillations. Therefore, the realistic effects of future ocean pCO levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca assays, respectively.
View Article and Find Full Text PDFPersistent organic pollutants (POPs) are known to converge into the ocean and accumulate in the sediment, posing great threats to marine organisms such as the sessile bottom burrowing bivalves. However, the immune toxicity of POPs, such as B[a]P, under future ocean acidification scenarios remains poorly understood to date. Therefore, in the present study, the impacts of B[a]P exposure on the immune responses of a bivalve species, Tegillarca granosa, under present and future ocean acidification scenarios were investigated.
View Article and Find Full Text PDFOceanic uptake of CO from the atmosphere has significantly reduced surface seawater pH and altered the carbonate chemistry within, leading to global Ocean Acidification (OA). The blood clam, Tegillarca granosa, is an economically and ecologically significant marine bivalve that is widely distributed along the coastal and estuarine areas of Asia. To investigate the physiological responses to OA, blood clams were exposed to ambient and three reduced seawater pH levels (8.
View Article and Find Full Text PDFThe impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.
View Article and Find Full Text PDFTo date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p < 0.
View Article and Find Full Text PDFThe clam Meretrix meretrix is an important commercial bivalve distributed in the coastal areas of South and Southeast Asia. In this study, marker-trait association analyses were performed based on the stock materials of M. meretrix with different vibrio-resistance profile obtained by selective breeding.
View Article and Find Full Text PDFI-type lysozyme is considered to play crucial roles in both anti-bacteria and digestion function of the bivalve, which signifies that it is related to both immunity and growth. In this study, based on the principle of case-control association analysis, using the stock materials with different vibrio-resistance profile obtained by selective breeding, single nucleotide polymorphisms (SNPs) in the DNA partial sequence of an i-type lysozyme of Meretrix meretrix (MmeLys) were discovered and examined for their association with vibrio-resistance and growth. Twenty-seven SNPs were detected and fifteen of them were genotyped in clam stocks with different resistance to Vibrio harveyi (09-C and 09-R) and to Vibrio parahaemolyticus (11-S and 11-R).
View Article and Find Full Text PDFComputer assisted movement tracking was used to characterize the motility of two marine microalgae, Isochrysis galbana and Tetraselmis chui, and to investigate the toxicity of Cu, Pb, and Cd on motile percentage, curvilinear velocity, average path velocity, straight line velocity, linearity, straightness, and wobble. Except for motile percentage, all other motility parameters differed significantly between I. galbana and T.
View Article and Find Full Text PDF