Publications by authors named "Xueli Mao"

PD-L1 is an immune checkpoint molecule mediating cancer immune escape, and its expression level in the tumor has been used as a biomarker to predict response to immune checkpoint inhibitor (ICI) therapy. Our previous study reveals that an 11 amino acid-long ANXA1-derived peptide (named A11) binds and degrades the PD-L1 protein in multiple cancers and is a potential peptide for cancer diagnosis and treatment. Near-infrared fluorescence (NIF) optical imaging of tumors offers a noninvasive method for detecting cancer and monitoring therapeutic responses.

View Article and Find Full Text PDF
Article Synopsis
  • * Infusing wild-type MSCs significantly enhances bone health in osteoporotic mice, while WT apoVs can restore impaired OVX MSCs by delivering a specific microRNA (miR-145a-5p) that boosts their function.
  • * The findings highlight a novel, non-genetic approach using apoVs to enhance stem cell therapy, offering potential new strategies for treating osteoporosis and maintaining bone health.
View Article and Find Full Text PDF

Aim: To investigate the level and distribution of apoptosis, pyroptosis, necroptosis, and NETosis in pulpitis with or without necrosis on a basis of histological classification. Additionally, to examine the effect of pulpitis with necrosis (PWN) on the number and activation of peripheral and bone marrow (BM) neutrophils, as well as spleen lymphocytes, in a mouse model of pulpitis.

Methodology: The material comprised 20 permanent teeth, with or without caries, which were classified into three histological categories based on the distribution of inflammatory cells and the presence or absence of necrosis: (i) healthy pulp (HP), (ii) pulpitis without necrosis (PWON), and (iii) PWN.

View Article and Find Full Text PDF

Mechanical force plays crucial roles in extracellular vesicle biogenesis, release, composition and activity. However, it is unknown whether mechanical force regulates apoptotic vesicle (apoV) production. The effects of mechanical unloading on extracellular vesicles of bone marrow were evaluated through morphology, size distribution, yield, and protein mass spectrometry analysis using hindlimb unloading (HU) mouse model.

View Article and Find Full Text PDF

Over 50 billion cells undergo apoptosis each day in an adult human to maintain tissue homeostasis by eliminating damaged or unwanted cells. Apoptotic deficiency can lead to age-related diseases with reduced apoptotic metabolites. However, whether apoptotic metabolism regulates aging is unclear.

View Article and Find Full Text PDF

Apoptotic vesicles (apoVs) play a vital role in various pathological conditions; however, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs) and regulating tissue homeostasis. Here, we proved that systemic infusion of bone marrow MSCs derived from wild-type (WT) mice effectively improved the osteopenia phenotype and hyperimmune state in ovariectomized (OVX) mice. Importantly, the WT MSCs rescued the impairment of OVX MSCs both and , whereas OVX MSCs did not show the same efficacy.

View Article and Find Full Text PDF

It has been emergingly recognized that apoptosis generates plenty of heterogeneous apoptotic vesicles (apoVs), which play a pivotal role in the maintenance of organ and tissue homeostasis. However, it is unknown whether apoVs influence postnatal ovarian folliculogenesis. Apoptotic pathway deficient mice including Fas mutant ( ) and Fas ligand mutant ( ) mice were used with apoV replenishment to evaluate the biological function of apoVs during ovarian folliculogenesis.

View Article and Find Full Text PDF

It is well known that DNA damage can cause apoptosis. However, whether apoptosis and its metabolites contribute to DNA repair is largely unknown. In this study, we found that apoptosis-deficient Fas and Bim mice show significantly elevated DNA damage and premature cellular senescence, along with a significantly reduced number of 16,000 g apoptotic vesicles (apoVs).

View Article and Find Full Text PDF

Over 50 billion cells undergo apoptosis each day in an adult human to maintain immune homeostasis. Hydrogen sulfide (HS) is also required to safeguard the function of immune response. However, it is unknown whether apoptosis regulates HS production.

View Article and Find Full Text PDF

Pyroptosis is an inflammatory programmed cell death process characterized by membrane rupture. Interestingly, pyroptotic cells can generate plenty of nanosized vesicles. Non-inflammatory apoptotic cell death-derived apoptotic vesicles (apoVs) were systemically characterized and displayed multiple physiological functions and therapeutic potentials.

View Article and Find Full Text PDF

Introduction: Periodontal regeneration, specifically the restoration of the cementum-periodontal ligament (PDL)-alveolar bone complex, remains a formidable challenge in the field of regenerative dentistry. In light of periodontal development, harnessing the multi-tissue developmental capabilities of periodontal ligament cells (PDLCs) and reinitiating the periodontal developmental process hold great promise as an effective strategy to foster the regeneration of the periodontal complex.

Objectives: This study aims to delve into the potential effects of the macrophage-mediated immune microenvironment on the "developmental engineering" regeneration strategy and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid bilayer nanovesicles released from living or apoptotic cells that can transport DNA, RNA, protein, and lipid cargo. EVs play critical roles in cell-cell communication and tissue homeostasis, and have numerous therapeutic uses including serving as carriers for nanodrug delivery. There are multiple ways to load EVs with nanodrugs, such as electroporation, extrusion, and ultrasound.

View Article and Find Full Text PDF

Background: Mesenchymal stem cell (MSC) transplantation is a promising therapeutic approach for noise-induced hearing loss (NIHL). As the indispensable role of apoptosis in MSC transplantation was raised, the benefits of MSC-derived apoptotic vesicles (apoVs) in several disease models have been proved. However, whether apoVs benefit in NIHL have not been studied yet.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid bound particles derived from their original cells, which play critical roles in intercellular communication through their cargoes, including protein, lipids, and nucleic acids. According to their biogenesis and release pathway, EVs can be divided into three categories: apoptotic vesicles (ApoVs), microvesicles (MVs), and small EVs (sEVs). Recently, the role of EVs in oral disease has received close attention.

View Article and Find Full Text PDF

Idiopathic Pulmonary Fibrosis (IPF) is identifiable by the excessive increase of mesenchyme paired with the loss of epithelium. Total flavonoids of Astragalus (TFA), the main biologically active ingredient of the traditional Chinese medicine, (Huangqi), shows outstanding effects on treating pulmonary disorders, including COVID-19-associated pulmonary dysfunctions. This study was designed to evaluate the efficacy of TFA on treating pulmonary fibrosis and the possible mechanisms behind these effects.

View Article and Find Full Text PDF

Diabetes is a major public health issue because of its widely epidemic nature and lack of cure. Here, we show that pancreas-derived mesenchymal stem cells (PMSCs) are capable of regenerating exocrine pancreas when implanted into the kidney capsule of mice with streptozotocin (STZ)-induced diabetes. Mechanistically, we found that the regenerated exocrine pancreas elevated interleukin-6 (IL-6) in PMSC implants, which transiently activated tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) to inhibit IL-17, thereby rescuing damaged exocrine pancreas and islet β cells.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are widely used in treating various diseases. However, lack of a reliable evaluation approach to characterize the potency of MSCs has dampened their clinical applications. Here, a function-oriented mathematical model is established to evaluate and predict the regenerative capacity (RC) of MSCs.

View Article and Find Full Text PDF

Over 300 billion of cells die every day in the human body, producing a large number of endogenous apoptotic extracellular vesicles (apoEVs). Also, allogenic stem cell transplantation, a commonly used therapeutic approach in current clinical practice, generates exogenous apoEVs. It is well known that phagocytic cells engulf and digest apoEVs to maintain the body's homeostasis.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) secrete cytokines in a paracrine or autocrine manner to regulate immune response and tissue regeneration. Our previous research revealed that MSCs use the complex of Fas/Fas-associated phosphatase-1 (Fap-1)/caveolin-1 (Cav-1) mediated exocytotic process to regulate cytokine and small extracellular vesicles (EVs) secretion, which contributes to accelerated wound healing. However, the detailed underlying mechanism of cytokine secretion controlled by Cav-1 remains to be explored.

View Article and Find Full Text PDF
Article Synopsis
  • - Apoptosis helps maintain balance in the body and creates a lot of apoptotic extracellular vesicles (apoEVs), which are involved in cell death signaling.
  • - Many cancer cells, like those in multiple myeloma (MM), can evade death signals due to reduced Fas receptor on their surface, but this study shows that apoEVs can trigger apoptosis in MM cells.
  • - Mesenchymal stem cell-derived apoEVs not only induce death in MM cells but also extend the lifespan of mice with MM, highlighting the potential of apoEVs as a therapeutic approach for treating this type of cancer.
View Article and Find Full Text PDF

Background: Human mesenchymal stem cells from dental pulp (hMSC-DP), including dental pulp stem cells from permanent teeth and exfoliated deciduous teeth, possess unique MSC characteristics such as expression of specific surface molecules and a high proliferation rate. Since hMSC-DP have been applied in numerous clinical studies, it is necessary to establish criteria to evaluate their potency for cell-based therapies.

Methods: We compared stem cell properties of hMSC-DP at passages 5, 10 and 20 under serum (SE) and serum-free (SF) culture conditions.

View Article and Find Full Text PDF

Mesenchymal stem cell transplantation (MSCT) has been applied to treat a variety of autoimmune and inflammatory diseases. Psychosocial stress can aggravate disease progression in chronic inflammatory patients. Whether psychological stress affects MSCT is largely unknown.

View Article and Find Full Text PDF

In the process of bone tissue engineering, the osteoimmunomodulatory property of biomaterials is very important for osteogenic differentiation of stem cells, which determines the outcome of bone regeneration. Magnesium (Mg) is a biodegradable, biocompatible metal that has osteoconductive properties and has been regarded as a promising bone biomaterial. However, the high degradation rate of Mg leads to excessive inflammation, thereby restricting its application in bone tissue engineering.

View Article and Find Full Text PDF

As a transcription factor regulated by bone morphogenetic protein 2 (BMP2), Forkhead c2 (Foxc2) plays a pivot role in osteogenesis/odontogenesis. However, the role of Foxc2 and BMP2 in regulating osteo-/odontogenic differentiation and mineralization of stem cells from apical papilla (SCAP) is still uncertain. In this research, overexpression of Foxc2 gene significantly improved the proliferation of SCAP four days and eight days after transfection, but overexpression of both Foxc2 and BMP2 genes significantly inhibited the proliferation of SCAP eight days after transfection.

View Article and Find Full Text PDF

Because of the size of bone substitute material particles, large animal bone defect models are usually required for the assessment of these materials. However, these models have several disadvantages including high cost, complicated operation procedures, ethical issues, and difficulties in sample analysis. In addition, for mimicking the bone environment, conventional subcutaneous models require the addition of osteogenic factors and stem cells, resulting in an expensive model with a complex experimental procedure.

View Article and Find Full Text PDF