In this paper, the short-range ordering structures of Ga melts has been investigated using the Wulff cluster model (WCM). The structures with a Wulff shape outside and crystal symmetry inside have been derived as the equivalent system to describe the short-range-order (SRO) distribution of the Ga melts. It is observed that the simulated HTXRD patterns of the Ga WCM are in excellent agreement with the experimental data at various temperatures (523 K, 623 K, and 723 K).
View Article and Find Full Text PDFNowadays, metallic materials are subject to increasingly high performance requirements, particularly in the context of energy efficiency and environmental sustainability, etc. Researchers typically target properties such as enhanced strength, hardness, and reduced weight, as well as superior physical and chemical characteristics, including electrochemical activity and catalytic efficiency. The structure of metal melts is essential for the design and synthesis of advanced metallic materials.
View Article and Find Full Text PDFDesigning a functional, conductive metal-organic framework (cMOF) is highly desired. Substantial efforts have been dedicated to increasing the intralayer conjugation of the cMOFs, while less dedication has been made to tuning the interlayer charge transport of the metal-organic nanosheets for the controllable dielectric property. Here, we construct a series of conductive bimetallic organic frameworks of (ZnCu) (hexahydroxytriphenylene) (ZnCu-HHTP) to allow for fine-tuned interlayer spacing of two-dimensional frameworks, by adjusting the ratios of Zn and Cu metal ions.
View Article and Find Full Text PDFIn order to investigate the structure of FeAl mesoscopic crystals segregating in liquid state alloys, we have determined their equilibrium structures (Wulff shape) based on the Wulff cluster model. For non-stoichiometric surface terminations, the chemical environment is taken into account through the chemical potential of the constituents. In this case, different cluster shapes change as a function of the chemical environment.
View Article and Find Full Text PDFPurpose: In the event of a large-scale radiological accident, rapid and high-throughput biodosimetry is the most vital basis in medical resource allocation for the prompt treatment of victims. However, the current biodosimeter is yet to be rapid and high-throughput. Studies have shown that ionizing radiation modulates expressions of circular RNAs (circRNAs) in healthy human cell lines and tumor tissue.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) manifest enormous potential in promoting electromagnetic wave (EMW) absorption thanks to the tailored components, topological structure, and high porosity. Herein, rodlike conductive MOFs (cMOFs) composed of adjustable metal ions of Zn, Cu, Co, or Ni and ligands of hexahydroxytriphenylene (HHTP) are prepared to attain tunable dielectric properties for a tailored EMW absorption. Specifically, the influences of the cMOFs' composition, charge transport characteristic, topological crystalline structure, and anisotropy microstructure on dielectric and EMW absorption performance are ascertained, advancing the understanding of EMW attenuation mechanisms of MOFs.
View Article and Find Full Text PDFDeveloping carbon encapsulated magnetic composites with rational design of microstructure for achieving high-performance electromagnetic wave (EMW) absorption in a facile, sustainable, and energy-efficiency approach is highly demanded yet remains challenging. Here, a type of N-doped carbon nanotube (CNT) encapsulated CoNi alloy nanocomposites with diverse heterostructures are synthesized via the facile, sustainable autocatalytic pyrolysis of porous CoNi-layered double hydroxide/melamine. Specifically, the formation mechanism of the encapsulated structure and the effects of heterogenous microstructure and composition on the EMW absorption performance are ascertained.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
May 2023
To provide the basis for thermal conductivity regulation of vermicular graphite cast iron (VGI), a new theoretical method consisting of shape interpolation, unit cell model and numerical calculation was proposed. Considering the influence of the graphite anisotropy and interfacial contact thermal conductivity (ICTC), the effective thermal conductivity of a series of unit cell models was calculated by numerical calculation based on finite difference. The effects of microstructure on effective thermal conductivity of VGI were studied by shape interpolation.
View Article and Find Full Text PDF(ETEC) is a common pathogen of swine colibacillosis, which can causing a variety of diseases initiate serious economic losses to the animal husbandry industry. The traditional Chinese medicine Changyanning (CYN) often used for diarrhea caused by the accumulation of damp heat in the gastrointestinal tract, has anti-bacterial, anti-inflammatory and anti-oxidation effects. This study investigated the effect of CYN on gut microbiota and metabolism in mice infected with ETEC K88.
View Article and Find Full Text PDFThe intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation.
View Article and Find Full Text PDFThe intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation.
View Article and Find Full Text PDFIn this work, by combining density functional theory calculations and Monte Carlo simulations with cluster expansion Hamiltonian methods, we investigate the surface aggregation of Pt atoms on the Pt/Ag(111) surface under vacuum conditions and in the presence of CO. The results show the decisive influence of CO-CO interactions and reveal the competition between CO-metal interactions and CO-CO repulsion. Thus, in addition to evidence of reverse Pt segregation caused by CO adsorption, two methods for tuning the surface Pt atomic system synthesis are found, where the surface can be adjusted by tuning the CO coverage to obtain a larger number of monomers (0.
View Article and Find Full Text PDFNanomaterials (Basel)
May 2022
In this article, the behavior of various Pd ensembles on the PdAg(111) surfaces was systematically investigated for oxygen reduction reaction (ORR) intermediates using density functional theory (DFT) simulation. The Pd monomer on the PdAg(111) surface (with a Pd subsurface layer) has the best predicted performance, with a higher limiting potential (0.82 V) than Pt(111) (0.
View Article and Find Full Text PDFIn this paper, the Wulff cluster model which has been proved to successfully describe the melt structure of pure metals, homogenous alloys and eutectic alloys has been extended to an alloy with intermetallic compounds (InBi). According to the cohesive energy and the solid-state XRD patterns, the most possible types of clusters in the melt are Bi and InBi. At relatively high temperatures, the superimposed XRD (simulated) patterns of Bi and InBi clusters are in good agreement with the experimental HTXRD patterns in terms of the position and intensity of the peaks.
View Article and Find Full Text PDFIntroduction: In the event of radiological accidents and cancer radiotherapies in the clinic, the gastrointestinal (GI) system is vulnerable to ionizing radiation and shows GI injury. Accessible biomarkers may provide means to predict, evaluate, and treat GI tissue damage. The current study investigated radiation GI injury biomarkers in rat plasma.
View Article and Find Full Text PDFThe advantages of sodium metal, such as abundant resources, low cost, high capacity, and high working potential, make it a promising metal anode. Unfortunately, the hazardous dendrite growth of sodium metal is one of the major hindrances for the practical application of sodium metal batteries (SMBs). By applying multifunctional Mg(II)@Ti C MXene as the protective layer for commercial Cu foil, the wettability of the electrolyte on the current collector is dramatically improved with the suppression of sodium dendrites.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2022
The structural, electronic and vibrational properties of a water layer on Ag(100) and Ag(511) have been studied by first-principles calculations and molecular dynamics simulations. The most stable water structure on the Ag(100) and Ag(511) surfaces have been obtained. The AIMD results showed rather high stability of the water layer on the stepped surface at 140 K, indicating a crystal-like structure with long-range ordering.
View Article and Find Full Text PDFPlenty of reports focus on the effects of low-dose radiation (LDR) on peripheral blood lymphocytes in radiation workers. However, studies on red blood cells (RBCs) in radiation workers are rarely reported. Many studies focused on investigate the hemogram of radiation staffs without detecting other components of RBCs.
View Article and Find Full Text PDFWith the advantages of high theoretical-specific capacity and lowest working potential, lithium metal anode is considered as the most promising anode for next-generation batteries. Here, a scalable dealloying method is developed to prepare nano-sized bismuth (Bi). It is found that the Bi-modification can not only enhance the wettability of the commercial polyethylene separator but also suppresses the lithium dendrite growth.
View Article and Find Full Text PDFIn this work, the surface structure of a PdAg alloy is investigated by cluster expansion (CE) combined Monte Carlo (MC) simulations. All systems with different component proportions show an obvious component segregation corresponding to the depth from the surface. A significant amount of Ag is observed on the first layer, and Pd is concentrated significantly on the second layer.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2021
In the present work, density functional theory (DFT) calculations were applied to confirm that the gold carbide previously experimentally synthesized was AuC film. A crucial finding is that these kinds of AuC films are self-folded on the graphite substrate, leading to the formation of a semi-nanotube structure, which significantly diminishes the error between the experimental and simulated lattice constant. The unique characteristic, the spontaneous archlike reconstruction, makes AuC a possible candidate for self-assembled nanotubes.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
July 2021
In order to assess the health risk of low-dose radiation to radiation professionals, monitoring is performed through chromosomal aberration analysis and micronuclei (MN) analysis. MN formation has drawbacks for monitoring in the low-dose range. Nucleoplasmic bridge (NPB) analysis, with a lower background level, has good dose-response relationships at both high and relatively low dose ranges.
View Article and Find Full Text PDFTo tackle the aggravating electromagnetic wave (EMW) pollution issues, high-efficiency EMW absorption materials are urgently explored. Metal-organic framework (MOF) derivatives have been intensively investigated for EMW absorption due to the distinctive components and structures, which is expected to satisfy diverse application requirements. The extensive developments on MOF derivatives demonstrate its significantly important role in this research area.
View Article and Find Full Text PDFPurpose: The objective of this research was to explore the dose-effect relationships of dicentric plus ring (dic + r), micronucleus (MN) and nucleoplasmic bridges (NPB) induced by carbon ions in human lymphocytes.
Materials And Methods: Venous blood samples were collected from three healthy donors. C ions beam was used to irradiate the blood samples at the energy of 330 MeV and linear energy transfer (LET) of 50 keV/μm with a dose rate of 1 Gy/min in the spread-out Bragg peak.