Publications by authors named "Xuelei Duan"

The aim of this study was to investigate the impact of supplementary feeding with Chinese herbal mixtures on perinatal sows, focusing on their reproductive performance, immunity and breast milk quality. Sixty healthy pregnant sows (Large white, 4 parities) were randomly allocated into five treatment groups ( = 12 per group): the control group received a basal diet, the TRT1 group received a basal diet supplemented with 2 kg/t Bazhen powder (BZP), while the TRT2, TRT3, and TRT4 groups received a basal diet supplemented with 1 kg/t, 2 kg/t, and 3 kg/t Qi-Zhu-Gui-Shao soothing liver and replenishing blood powder (QZGSP), respectively. The trial lasted for a duration of 5 weeks, commencing from day 100 of gestation and concluding on day 21 postpartum.

View Article and Find Full Text PDF

The stress response of pig herds poses a significant challenge in the pig breeding industry, and investigating strategies to mitigate this stress is of paramount importance. The objective of this study was to investigate the impacts of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. A total of 60 healthy sows (Large white) at fourth parity were randomly assigned to five treatment groups.

View Article and Find Full Text PDF

Based on the important feature of sulfur with excellent selectivity toward selenite in the presence of selenate, a simple and low-cost adsorbent of solid phase extraction known as sulfur loading activated carbon (SAC-6) was successfully prepared and applied for selenite (Se(IV)) analysis in water. Microstructure and morphological characteristics of SAC-6 had been identified by XRD, TEM, BET and FT-IR. In the static adsorption experiments, Se(IV) could be separated in a wide range of pH values (pH=3-11).

View Article and Find Full Text PDF

Gaseous mercury pollution control technologies with low stability and high releasing risks always face with great challenges. Herein, we developed one halloysite nanotubes (HNTs)-supported tungsten diselenide (WSe) composite (WSe/HNTs) by one-pot solvothermal approach, curing Hg from complicated flue gas (CFG) and reducing second environment risks. WSe as a monolayer with nano-flower structure and HNTs with rod shapes in the as-prepared sorbent exhibited outstanding synergy efficiency, resulting in exceptional performance for Hg removal with high capture capacity of 30.

View Article and Find Full Text PDF

Along with the environmental protection policies becoming strict in China, the air pollution control devices (especially selective catalytic reduction (SCR)) are widely equipped in coal-fired power plants. The installation and run of these devices will inevitably affect mercury (Hg) species distribution in coal fired by-products such like fly ash (FA) and gypsum. In this work, a new on-line coupling system based on atomic fluorescence spectrometry (AFS) with a home-made chromatographic workstation was successfully developed to identify Hg species through thermal programmed desorption (TPD).

View Article and Find Full Text PDF

This work aims at exploring a novel environment-friendly nanomaterial based on natural clay minerals for arsenic removal in aqueous samples. Halloysite nanotubes (HNTs) were selected as the substrate with Mn oxides loaded on the surface to enhance its arsenic adsorption ability and then grafted onto the SiO-coated FeO microsphere to get a just enough magnetic performance facilitating the material's post-treatment. The prepared composite (FeO@SiO@Mn-HNTs) was extensively characterized by various instruments including Fourier transform infrared spectroscope (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TG), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscope (XPS), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Gaseous arsenic emitted from coal combustion flue gas (CCFG) causes not only severe contamination of the environment but also the failure of selective catalytic reduction (SCR) catalysts in power plants. Development of inexpensive and effective adsorbents or techniques for the removal of arsenic from high-temperature CCFG is crucial. In this study, halloysite nanotubes (HNTs) at low price were modified with CuCl (CuCl-HNTs) through ultrasound assistance and applied for capturing AsO(g) in simulated flue gas (SFG).

View Article and Find Full Text PDF

The creation of an environmentally friendly synthesis method for silver nanomaterials (AgNPs) is an urgent concern for sustainable nanotechnology development. In the present study, a novel straightforward and green method for the preparation of silver nanoparticle/reduced graphene oxide (AgNP/rGO) composites was successfully developed through the combination of phytosynthesis, continuous flow synthesis and microwave-assistance. Oriental persimmon (Diospyros kaki Thunb.

View Article and Find Full Text PDF

Impact strength of high-density polyethylene (HDPE), especially at low temperature, is crucial for its applications outdoors because of its poor impact strength. In order to improve the impact strength of HDPE, crosslinked HDPE was prepared by the addition of a peroxide crosslink agent, bis(-butyldioxyisopropyl)benzenehexane, and the effect of the crosslinking density on the microstructures and mechanical properties, especially impact strength between -60 °C and 23 °C, were investigated. The results show that the crosslinking density is controlled by varying the content of the crosslinking agent.

View Article and Find Full Text PDF

Halloysite nanotubes (HNTs) as a natural and inexpensive clay mineral with hollow nanotubular structures, good biocompatibility and active surfaces have been ubiquitously applied in many fields. In this work, a novel multifunctional core-shell sorbent based on HNTs, CuCl-HNTs encapsulated magnetic microspheres (SiO@FeO), was successfully fabricated and applied for Hg removal from flue gas with good performance for the first time. The core-shell structure prevented the composites from aggregating but kept their magnetism, which enabled the adsorbents being easily separated for reuse by an external magnetic field.

View Article and Find Full Text PDF

High-efficient and economic sorbents are highly desired for arsenic (As) emission control in flue gas from coal-fired power plant. A series of Fe-Mn binary oxides were prepared by a facile method, and their behaviors for gaseous arsenic removal in flue gas were investigated. The binary oxide exhibited a remarkable synergistic effect for arsenic removal compared with Mn or Fe monometallic oxide.

View Article and Find Full Text PDF

It is very necessary to produce bio-activated carbon for special use with easy procedure and low cost. One kind of huge surface area microporous bio-material was successfully prepared from agricultural residues (peanut shell, Arachis hypogaea Linn.) and beneficially applied to control elemental mercury (Hg) in simulated coal-fired flue gas in this study.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Xuelei Duan"

  • - Xuelei Duan's recent research has focused on developing innovative solutions for environmental challenges, particularly in the contamination of water and air by hazardous substances like arsenic and mercury.
  • - His studies include the utilization of functionalized halloysite nanotubes and activated carbon for the efficient removal of toxic elements from various mediums, highlighting significant advancements in adsorbent materials.
  • - Additionally, Duan has investigated the impacts of dietary interventions using Chinese herbal mixtures on the antioxidant capacity and gut microbiota in livestock, indicating a dual focus on agricultural health and environmental sustainability.