Publications by authors named "Xueke Sun"

Multivalent presentation of antigens using nanoparticles (NPs) as a platform is an effective strategy to enhance the immunogenicity of subunit vaccines and thus induce a high level of organismal immune response. Our previous results showed that pre-existing porcine circovirus type 2 (PCV2) antibodies could increase the antibody levels of nanoparticle vaccines carried in PCV2 VLPs. Here, we have established a generalized nanoantigen display platform, Cap-Cat virus-like particles (VLPs).

View Article and Find Full Text PDF

Cancer cells undergo a significant level of "metabolic reprogramming" or "remodeling" to ensure an adequate supply of ATP and "building blocks" for cell survival and to facilitate accelerated proliferation. Cancer cells preferentially use glycolysis for ATP production (the Warburg effect); however, cancer cells, including colorectal cancer (CRC) cells, also depend on oxidative phosphorylation (OXPHOS) for ATP production, a finding that suggests that both glycolysis and OXPHOS play significant roles in facilitating cancer progression and proliferation. Our prior studies identified a semisynthetic isoflavonoid, DBI-1, that served as an AMPK activator targeting mitochondrial complex I.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity.

Methods: In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen with a high mortality rate, which poses a serious threat to newborn piglets. A rapid, safe and effective vaccine is necessary for protecting pigs from PED infection. Nanoparticles have become molecular scaffolds for displaying soluble antigens due to their unique physical and chemical properties.

View Article and Find Full Text PDF

Introduction: The monkeypox (Mpox) virus epidemic presents a significant risk to global public health security. A35R, a crucial constituent of EEV, plays a pivotal role in virus transmission, serves as a vital target for vaccine development, and has potential for serological detection. Currently, there is a dearth of research on nanobodies targeting A35R.

View Article and Find Full Text PDF

Background: Ultrasound-guided percutaneous thermal ablation has become an alternative treatment for small hepatocellular carcinoma (HCC). Recent evidence suggests that fusion imaging (FI) may improve the feasibility and efficacy of thermal ablation for HCC, while the clinical evidence remains limited.

Purpose: To compare FI versus ultrasound-guided thermal ablation for HCC.

View Article and Find Full Text PDF

African swine fever (ASF) is a highly infectious and lethal viral disease caused by the African swine fever virus (ASFV). The four prominent loop structures on the surface of the primary structural protein P72 are considered to be key protective epitopes. In this study, the four critical loops (ER1-4) of the ASFV p72 protein were individually fused to hepatitis B virus core particles (HBc) and self-assembled into nanoparticles to preserve the natural conformation of the loop structure and enhance its immunogenicity.

View Article and Find Full Text PDF

From modular vaccine production to protein assembly on nanoparticles, the SpyCatcher/SpyTag system provides a convenient plug-and-display procedure. Here, we established a general-purpose immunoaffinity chromatography (IAC) method for SpyTagged proteins (Spy&IAC). SpyTags are displayed on the surface of nanoparticles to induce high-affinity monoclonal antibodies, allowing the specific capture of the target protein.

View Article and Find Full Text PDF

African swine fever virus (ASFV), a DNA double-stranded virus with high infectivity and mortality, causing a devastating blow to the pig industry and the world economy. The CD2v protein is an essential immunoprotective protein of ASFV. In this study, we expressed the extracellular region of the CD2v protein in the 293F expression system to achieve proper glycosylation.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), as an essential tumor treatment method, has received great attention; however, there are still some challenges such as hydrophobicity of most of the photosensitizers, safety of in vivo transport, and characteristics of oxygen consumption. Herein, we used albumin as the nanocarrier for the loading of Chlorin e6 (Ce6) photosensitizer. In the meantime, tirapazaming (TPZ) was co-loaded onto the nanocomposite, which could be activated by hypoxia caused by PDT for enhanced therapy.

View Article and Find Full Text PDF

Accurate treatment of photothermal therapy (PTT) is crucial to avoid the unnecessary injury of normal cells and tissues. Therefore the real-time temperature monitoring in the PTT process has drawn more and more attention in recent years. Herein, we designed and prepared one kind of lanthanide (Ln)-doped up-conversion nanocomposites with multi-functions, which can not only provide temperature feedback in PTT process, but also play the photodynamic therapy (PDT) function for the synergistic effect of tumor therapy.

View Article and Find Full Text PDF

Objectives: The objectives of this study were to: (1) develop the multifunctional nanoparticles containing Chlorin e6 (Ce6), Coumarin 6 (C6) and FeO nanoparticles (NPs); and (2) investigate the inhibitory effects of the nanoparticles via antibacterial photodynamic therapy (aPDT) against three species of periodontitis-related pathogens for the first time.

Materials And Methods: Ce6 and C6 were co-loaded into the FeO-silane core-shell structure to form multifunctional nanoparticles (denoted "FeO-silane@Ce6/C6 MNPs"). The physical and chemical properties of nanoparticles were characterized.

View Article and Find Full Text PDF

Drug release systems with fluorescence detection have emerged as a potential application for the biological area of diagnosis and therapy. Carbon dots (CDs) are a promising fluorescence probe for application in a drug release system due to their excellent biocompatibility, low toxicity, chemical inertness, and non-blinking fluorescence emission. Herein, we developed a composite nanocarrier based on fluorescent CDs and polyvinylpyrrolidone (PVP) through an electrospinning technology.

View Article and Find Full Text PDF

Intracellular pH sensing is of importance and can be used as an indicator for monitoring the evolution of various diseases and the health of cells. Here, we developed a new class of surface-functionalized MXene quantum dots (QDs), TiC, by the sonication cutting and hydrothermal approach and further explored their intracellular pH sensing. The functionalized TiC QDs exhibit bright excitation-dependent blue photoluminescence (PL) originating from the size effect and surface defects.

View Article and Find Full Text PDF

Artificial fractal structures have attracted considerable scientific interest in circulating tumor cells (CTCs) detection and capture, which plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we designed a bionic TiO inverse opal photonic crystal (IOPC) structure for highly efficient immunocapture of CTCs by combination of a magnetic FeO@C6@silane nanoparticles with anti-EpCAM (antiepithelial cell adhesion molecule) and microchannel structure. Porous structure and dimension of IOPC TiO can be precisely controlled for mimicking cellular components, and anti-EpCAM antibody was further modified on IOPC interface by conjugating with polydopamine (PDA).

View Article and Find Full Text PDF

Detection and isolation of circulating tumor cells (CTCs) play a pivotal role in the diagnosis and prognosis of cancer, while the high capture efficiency and purity of CTCs are difficult to achieve simultaneously among the various isolation methods. In this work, we designed an inverted microchip integrating silicon nanowires (SiNWs) and multifunctional magnetic nanocomposites (FeO@C6/Ce6@silane, Coumarin 6 (C6), Chlorin e6 (Ce6)) for enhanced capture efficiency and purity of CTCs. The FeO@C6/Ce6@silane conjugated with antibody can label the CTCs and pull them to the upside SiNWs capture surface by the upward magnetic field with high purity.

View Article and Find Full Text PDF

Efficient targeting is a major challenge in practical photodynamic therapy (PDT). Though the "enhanced permeability and retention" (EPR) effect is a widely used tumor targeting method, magnetic targeting strategy is more promising considering the issue of high targeting efficiency and reducing concentration-dependent toxicity. Herein, magnetic targeting and highly effective FeO@Ce6/C6@silane NPs are reported as a class of precisely controlled photosensitizers (PS) for PDT.

View Article and Find Full Text PDF

A novel fluorescent dendrimer PYTPAG2, with pyrene as the interior core and triphenylamine (TPA) as the exterior periphery, is studied as a fluorescence-quenching sensor for iron (ш) ions (Fe(3+)), both in solution and as a film. This dendrimer-based sensor possesses preferential detection of Fe(3+) by a very strong fluorescence quenching not found for other metal ions. The fluorescent detection limits of this PYTPAG2 sensor for Fe(3+) in solution and thin-film are 6.

View Article and Find Full Text PDF

Objective: To map the susceptibility gene of developmental dysplasia of the hip(DDH) in chromosome 17q21 region.

Methods: According to the number of alleles (≥ 5), heterozygosity (≥ 0.70) and polymorphic information content (PIC≥ 0.

View Article and Find Full Text PDF

Objective: To establish a new method of SNP typing.

Methods: Based on the principle of allele specific PCR and capillary electrophoresis technique, 11 diallelic SNP loci were selected and two forward primers with different length were designed for each SNP, with their 3' ends matched to the two alleles, respectively. An artificially mismatched base was also introduced into the third or fourth base in the 3' end area of the two forward primers in order to enhance the specificity of amplification.

View Article and Find Full Text PDF