Publications by authors named "Xueke Jiang"

Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations exhibits distinct biological and clinical features, accounting for approximately one-third of AML. Recently, the -methyladenosine (mA) RNA modification has emerged as a new epigenetic modification to contribute to tumorigenesis and development. However, there is limited knowledge on the role of mA modifications in NPM1-mutated AML.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) carrying nucleophosmin (NPM1) mutations has been defined as a distinct entity of acute leukaemia. Despite remarkable improvements in diagnosis and treatment, the long-term outcomes for this entity remain unsatisfactory. Emerging evidence suggests that leukaemia, similar to other malignant diseases, employs various mechanisms to evade killing by immune cells.

View Article and Find Full Text PDF

Objective To investigate the effect of miR-148b-3p on the proliferation and autophagy of acute myeloid leukemia (AML) cells and its molecular mechanism. Methods Based on GEO and TCGA databases, the expression of miR-148b-3p in AML cells and its association with clinical prognosis of patients were analyzed with the bioinformatics software. The expression of miR-148b-3p in AML cells was detected by real-time quantitative PCR.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1), which displays a distinct long noncoding RNA (lncRNA) expression profile, has been defined as a unique subgroup in the new classification of myeloid neoplasms. However, the biological roles of key lncRNAs in the development of NPM1-mutated AML are currently unclear. Here, we aimed to investigate the functional and mechanistic roles of the lncRNA HOTAIRM1 in NPM1-mutated AML.

View Article and Find Full Text PDF

Nucleophosmin (NPM1) mutations are the most frequent genetic alteration in acute myeloid leukemia (AML) and aberrant cytoplasm-dislocated NPM1 mutant is a distinct biological characterization of this disease. Our group previously reported that NPM1 mutant elevated autophagy activity and autophagy activation contributed to leukemic cell survival. However, the molecular mechanisms by which cytoplasmic NPM1 mutant involving in the autophagy pathway has not been fully elucidated.

View Article and Find Full Text PDF

Non-small cell lung cancer is the most common type of cancer with a poor prognosis, and development of an effective diagnostic method is urgently needed. Exosomal lncRNAs, a class of transcripts longer than 200 nucleotides packaged into exosomes, have been defined as an ideal diagnostic biomarker for cancer. However, little is known about the clinical utility of exosomal lncRNAs in NSCLC.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with mutated () is acknowledged as a distinct leukemia entity in the 2016 updated World Health Organization (WHO) classification. NPM1-mutated AML patients are correlated with higher extramedullary involvement. Epithelial-mesenchymal transition (EMT) is one of the key steps which cause distant metastasis in tumor.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with mutated () has been defined as a distinct leukemia entity in the 2016 updated WHO classification of myeloid neoplasm. Our previous report showed that autophagic activity was elevated in NPM1-mutated AML, but the underlying molecular mechanisms remain elusive. Mount of study provides evidence that glycometabolic enzymes are implicated in the autophagic process.

View Article and Find Full Text PDF