We propose a scheme of quantum plasmon sensing system based on strong photon-exciton coupling in the gap surface plasmon nanostructure. The system's sensitivity is characterized as Rabi splitting, which is sensitive to a slight change in environmental permittivity and determined by the coupling coefficient and detuning between the emitter and plasmon nanocavity. By increasing the dipole moment of the emitter, the sensitivity can exceed that of a traditional plasmon sensing system while only depending on the resonance spectral shift.
View Article and Find Full Text PDFWe demonstrate the spectral accumulation of large spontaneous emission (SE) for nanocavities with different sizes in the coupled Ag nanorod and epsilon-near-zero (ENZ) film system. This effect originates from the slowing down of the spectral shift of resonant nanocavities at the wavelength where the permittivity of the substrate vanishes, i.e.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play significant roles in both embryonic hematopoiesis and hematological malignancy. Zebrafish miR-462-731 cluster is orthologous of miR-191-425 in human which regulates proliferation and tumorigenesis. In our previous work, miR-462-731 was found highly and ubiquitously expressed during early embryogenesis.
View Article and Find Full Text PDFControlling spontaneous emission at optical scale lies in the heart of ultracompact quantum photonic devices, such as on-chip single photon sources, nanolasers and nanophotonic detectors. However, achiving a large modulation of fluorescence intensity and guiding the emitted photons into low-loss nanophotonic structures remain rather challenging issue. Here, using the liquid crystal-tuned gap surface plasmon, we theoretically demonstrate both a high-contrast switching of the spontaneous emission and high-efficiency extraction of the photons with a specially-designed tunable surface plasmon nanostructures.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2018
Scalable integrated quantum information network calls for controllable entanglement modulation at subwavelength scale. To reduce laser disturbance among adjacent nanostructures, here we theoretically demonstrate two-qubit entanglement modulated by an evanescent field of a dielectric nanowire in an emitter-AgNP coupled system. This coupled system is considered as a nano-cavity system embedded in an evanescent vacuum.
View Article and Find Full Text PDFCombining the advantages of both gap surface plasmons (GSPs) and evanescent waves, we demonstrate simultaneously large Purcell enhancement and efficient one-dimensional collection of photons at subwavelength scale in the coupled nanowire-nanorod system. The spontaneous emission (SE) can be enhanced thousands of times based on the excitation of GSPs with strongly localized electromagnetic field. Emitted photons are directly collected by subwavelength-confined evanescent modes and guided along the nanowire.
View Article and Find Full Text PDF