Publications by authors named "Xuejun Tan"

Background: Postmenopausal osteoporosis (PMOP) is a systemic bone disease characterized by low bone mass and microstructural damage. Morinda Officinalis (MO) contains various components with anti-PMOP activities. Morinda Officinalis-derived extracellular vesicle-like particles (MOEVLPs) are new active components isolated from MO, and no relevant studies have investigated their anti-osteoporosis effect and mechanism.

View Article and Find Full Text PDF

The rapid degradation of short-chain fatty acids (SCFAs) is an essential issue of anaerobic digestion (AD), in which SCFA oxidizers could generally metabolize in syntrophy with methanogens. The dynamic responses of active metagenome-assembled genomes to low concentrations of propionate and acetate were analyzed to identify specific syntrophic SCFA oxidizers and their metabolic characteristics in continuous-flow AD systems treating waste activated sludge with and without hydrochar. In this study, hydrochar increased methane production by 19%, possibly due to hydrochar enhancing acidification and methanogenesis processes.

View Article and Find Full Text PDF

All humans are universally affected by inflammatory diseases, and there is an urgent need to identify new anti-inflammatory drugs with good therapeutic benefits and minimal side effects to the organism. Recently, it has been found that plant-derived vesicle-like nanoparticles (PDVLNs) have good biocompatibility, with their active ingredients exhibiting good therapeutic effects on inflammation. They can also be used as drug carriers for targeted delivery of anti-inflammatory drugs.

View Article and Find Full Text PDF

The microbial-mediated removal of arsenate by biomineralization received much attention, but the molecular mechanism of Arsenic (As) removal by mixed microbial populations remains to be elucidated. In this study, a process for the arsenate treatment using sulfate-reducing bacteria (SRB) containing sludge was constructed, and the performance of As removal was investigated at different molar ratios of AsO to SO. It was found that biomineralization mediated by SRB could achieve the simultaneous removal of arsenate and sulfate from wastewater but only occurred when microbial metabolic processes were involved.

View Article and Find Full Text PDF

The objective of this study was to conduct a comparative study of the distribution and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the sewage collection and treatment system of four cities located in the middle and lower reaches of the Yangtze River. The results revealed that the mean concentration of 16 ΣPAHs was higher in the sewer sediments (1489.45 ng·g) than in the sewage sludge (781.

View Article and Find Full Text PDF

Pyrolysis of waste sludge in sewage treatment can achieve a substantial reduction in solid waste and obtain sludge-based biochars with multiple functions. However, the electrochemical properties of sludge-derived biochar as electrode modification material and the electrocatalytic ability of biochar-modified electrodes are still unclear. In this study, sludge-based biochars were prepared at various pyrolysis temperatures (400 °C, 500 °C, 600 °C, 700 °C, and 800 °C) and then were cast on glassy carbon electrodes to fabricate composite biochar-electrodes (GC400, GC500, GC600, GC700, and GC800).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nano-sized membrane vesicles released by various cell types. Mammalian EVs have been studied in-depth, but the role of plant EVs has rarely been explored. For the first time, EVs from roots were isolated and identified using transmission electron microscopy and a flow nano analyzer.

View Article and Find Full Text PDF

In the context of climate policies that advocate carbon neutrality, carbon emission reduction provides a new restriction in evaluating the waste activated sludge (WAS) treatment technologies and procedures. This review provides an overview of current researches and development efforts in WAS treatment, focusing on the dual attributes of WAS as contaminants and resources. Firstly, the improved technical requirements posed by heavy metals, micro(nano) plastics, or other emerging plastics in WAS are studied.

View Article and Find Full Text PDF

In order to better understand the bioavailability, toxicity, migration and transformation behaviors of trace metals in river estuary, this study deeply investigated the interactions between organic matters in sediments and trace metals. The results suggested that both protein-like molecules and marine humic acids could react with trace metals (Cu and Cd). These two fluorescent substances fixed trace metals through carboxyl group, hydroxyl group, and phenol hydroxyl group, and protein-like molecules were more sensitive than marine humic acids.

View Article and Find Full Text PDF

Periodic starvation was a common strategy for the rapid start-up of aerobic granular sludge (AGS), and investigating the behavior of microbes that originated from inner or outer layer in response to feast/famine condition could provide more details for the development or stability of AGS. In this work, the microbes of the AGS were isolated by layers, the aggregation of microbes, the adhesion behavior of microbes, and viscoelasticity of the layer formed by microbes, at feast/famine conditions, were investigated for the in-depth understanding of the start-up and stability of AGS. The famine condition reduced the negative charge and deprotonated carboxyl groups of the surface thereby boosting the aggregation and adhesion of microbes.

View Article and Find Full Text PDF

The addition of biochars to promote the efficiency of anaerobic digestion (AD) has widely received concerns. However, the role of persistent free radicals (PFRs) and the electron transfer ability of biochar in AD has not yet been noticed. In this study, biochars were prepared from excess sludge under 400 °C (B400) or 600 °C (B600) and different ratios of sludge to biochar (5:1, 10:1, 20:1) were applied in the AD of sludge.

View Article and Find Full Text PDF

The pyrolysis of excess sludge derived from wastewater treatment plants to prepare biochar can achieve the mass-reduction and harmlessness of solid waste, but it is also necessary to further explore the application prospect of these biochars as a resource for wastewater treatment. In this study, Fe-modified biochar (BC-Fe) was prepared by pyrolysis of excess sludge modified by FeCl solution. The molecular structure, elemental valence state, and composition of biochars were comprehensively investigated.

View Article and Find Full Text PDF

The start-up and stability of aerobic granular sludge (AGS) could be greatly influenced by pH variation. The inner core in the aerobic granules provided adhesion sites for microbes by extracellular polymeric substances (EPS) adhesion, the adhesion behavior of EPS and the properties of adhesion layer formed by EPS with pH changes might directly affect the start-up efficiency and stability of AGS. In this study, the adhesion behavior of EPS at an inorganic surface and the viscoelasticity of the EPS adhesion layer with pH variation was investigated by quartz crystal microbalance with dissipation monitoring, and the response of functional groups and intermolecular interactions to pH changes was explored.

View Article and Find Full Text PDF

The improvement of the catalytic performance of sludge-based biochar plays an important role in the catalytic application of biochar. This work aimed to use transition metals and rare earth elements (Fe, Ce, La, Al, Ti) to modify sludge and prepare modified biochar with better catalytic performance through pyrolysis. Through the Fourier transform infrared spectrometer, Raman spectrometer, and X-ray photoelectron spectroscopy, the effects of different metal modifications on the surface morphology, molecular structure, element compositions, and valence of elements of biochar were comprehensively investigated.

View Article and Find Full Text PDF

Waste activated sludge (WAS) has attracted considerable attention as an excellent material for P recovery from sewage. This study took concentrated phosphorus removal sludge as objective, and aimed at providing an effective route to promote the transformation of polyphosphate in sludge pellets to dissolved phosphate. After acid pH adjustment, total dissolved phosphate at pH 3.

View Article and Find Full Text PDF

Mechanical, chemical, and biological methods are always used to pretreat sewage sludge. To determine which pretreatment can release more organic matter from sewage sludge, and therefore, make it more economical, mechanical pretreatment (ultrasonic treatment at 20 kHz), chemical pretreatment (pH 10), and biological pretreatment (anaerobic conditions at 70℃) were compared. Results showed that all three pretreatments increased the organic matter release of sewage sludge; the initial total soluble protein and carbohydrate concentration of which was only 418.

View Article and Find Full Text PDF

A quinone-respiring strain capable of degrading multitudinous petroleum hydrocarbons was isolated by selective medium and identified as Bacillus sp. (named as C8). Maximum 76.

View Article and Find Full Text PDF

The process of anaerobic co-digestion is vital importance to resource recovery from organic solid wastes such as food waste and municipal sludge. However, its application is hindered by the limited understanding on the complex substrates-products transformation reactions and mechanisms therein. In this study, food waste (FW) and excess sludge (ES) from municipal wastewater treatment were mixed at various ratios (ES/FW 5:0, 4:1, 2:1, 1:1, 1:2, 1:4, w/w), and the co-digestion process was studied in a batch test.

View Article and Find Full Text PDF

Tonsillar and adenoidal hypertrophy are prevalent otolaryngologic disorders in children, but their pathogenesis is largely unknown. The presence of human papillomavirus (HPV) and Epstein-Barr virus (EBV) DNA in 146 tonsil and/or adenoid tissue specimens from 104 Chinese children with tonsillar and/or adenoidal hypertrophy were screened using flow-through hybridization gene-chip technology and real-time fluorescence-based quantitative PCR. Then, the relationships between the prevalence of the viruses and other clinical characteristics of tonsillar and/or adenoidal hypertrophy were analyzed.

View Article and Find Full Text PDF

Human papillomavirus (HPV) infection has been shown to be associated with human tumorigenesis. The aim of the present study was to demonstrate the association between HPV infection and parotid gland tumors. Paraffin-embedded tissue sections from 59 cases of parotid gland tumors and 20 normal oral mucosa were subjected to DNA extraction and flow-through hybridization and gene chip technology to detect infection of 37 HPV types.

View Article and Find Full Text PDF

Background: Current imaging techniques provide only limited information pertaining to the extent of infiltration of laryngeal carcinomas into vocal fold tissue layers. Therefore, it is needed to seek the contribute to the body of knowledge surrounding examination and characterization in laryngeal carcinoma infiltration.

Methods: Excised larynges were collected from 30 male laryngectomy patients with an average age of 43.

View Article and Find Full Text PDF

The effect of temperature on the hydrolysis and acidification of ultrasonic-pretreated waste activated sludge (WAS) under alkaline conditions was investigated in this study. The experiment temperatures were set at 10, 20, 37, and 55°C. Experimental results showed that the hydrolysis of ultrasonic-pretreated WAS under alkaline conditions increased significantly with temperature from 10 to 55°C, while the volatile fatty acid (VFA) accumulation was not augmented as temperature increased.

View Article and Find Full Text PDF

In order to determine the prevalence and genotype distribution of human papillomavirus (HPV) infection in patients with nasal polyps, a total of 204 patients with nasal polyps and 36 healthy controls were recruited for this study. Genomic DNA was extracted from paraffin-embedded tissue sections. HPV DNA genotyping was achieved by a flow-through hybridization and gene-chip method.

View Article and Find Full Text PDF

The particles from carwash wastewater were separated by a hollow fiber membrane aided by a enhanced coagulation and activated carbon. This study demonstrated that the addition of KMnO(4) to coagulant (PAC) could enhance the efficiency of coagulation, which helped reduce clogging of the ultrafiltration membrane and activated carbon. The existence of LAS can loosen the gel layer on the membrane and improve the flux.

View Article and Find Full Text PDF